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ABSTRACT

To facilitate the U.S. wholesale electric power restructuring process and promote competi-

tive market outcomes, in April 2003 the U.S. Federal Energy Regulatory Commission (FERC)

proposed a complicated market design called the Wholesale Power Market Platform (WPMP)

for common adoption by all U.S. wholesale power markets. Despite the fact that versions of the

WPMP have been widely implemented in many states, strong opposition to the WPMP per-

sists among some industry stakeholders due largely to a perceived lack of adequate performance

testing. In this dissertation, I apply analytical, statistical and agent-based computational sim-

ulation tools to analyze and test financial and real power market operations under the current

WPMP design. The overall dissertation objective is to better understand how and to what

extent the WPMP design facilitates to produce orderly, fair and efficient market outcomes.

Four related studies have been undertaken to address four different issues at four different

levels. Specifically, my first paper is a theoretical study of financial transmission right (FTR)

markets. My second paper is an empirical study on the Midwest FTR market using statistical

estimation tools. My third paper is an agent-based computational wholesale power market

simulation study for systematic market design tests and market structure analyses. And my

fourth paper is an optimization study in which I develop a Java-based DC OPF solver.
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CHAPTER 1. GENERAL INTRODUCTION

1.1 Introduction

The electric power industry is one of the largest infrastructure industries in the U.S. Since

the 1990s, the U.S. electric power industry has undergone tremendous changes from a heavily

regulated and vertically integrated monopoly industry to a more market-oriented environ-

ment consisting of smaller specialized firms more open to competition and supervised with

lighter regulations. This restructuring process is echoed on a broader level by the deregulation

movements in other infrastructure industries such as telecommunications, transportation (e.g.,

airlines) and other energy industries (e.g., water and gas).

Different from other infrastructure industries, electric power has two distinct features. First,

it is extremely expensive, if not impossible, to store power energy. Thus, almost all electric

power is delivered through transmission lines for immediate consumption once it is produced.

Second, the power flow among transmission paths cannot be controlled and monitored perfectly

due to the underlying physical network flow structure. These two features contribute to the

fact that there is now a tendency for transmission lines across and within major U.S. electric

power markets to become congested. This has a substantial impact on the locational marginal

price system and the overall reliability of the wholesale power market.

To help relieve transmission congestion, and to promote reliability and efficiency, in April

2003 the U.S. Federal Energy Regulatory Commission (FERC) proposed a complicated market

design called the Wholesale Power Market Platform (WPMP) for common adoption by all

U.S. wholesale power markets. One important aspect of the WPMP is the recommended use

of financial transmission rights (FTRs) to hedge the risk of volatile energy prices caused by

congested transmission lines. Versions of the WPMP have been implemented in New England,
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New York, the Mid-Atlantic states, the Midwest, and the Southwest, and have been adopted for

implementation in California. In the academic research community as well as among industrial

stakeholders, whether FTRs can serve as an effective and efficient hedge instrument as well as

whether the overall WPMP design provides a reliable and efficient market environment remain

hot issues for debate.

In this dissertation research, I apply analytical, statistical and agent-based computational

simulation tools to investigate and test financial and real market operations in the restructured

U.S. wholesale power industry. Specifically, four related studies have been undertaken to

address four different issues at four different levels.

1.2 Thesis Organization

This dissertation consists of four papers and is organized as follows:

My first paper titled “U.S. Financial Transmission Rights: Theory and Practice” addresses

an important policy question regarding whether the existence of financial transmission rights

(FTRs) as a financial hedge instrument against volatile wholesale electricity prices would in-

crease efficiency and improve social welfare. Using analytical modeling approach, I am able

to show that under network uncertainty the acquisition of optimal FTRs by the risk averse

market traders will increase the social welfare compared with the case where there are no FTRs

available. This result presents a counterexample to the somewhat negative views about FTRs

held by some economists in the literature and provides some economic explanations to the fact

that FTRs are widely adopted as a financial hedge instrument in the major U.S. wholesale

power markets.

Different from the theoretical nature of the first study, my second paper titled “Evaluating

the Performance of Financial Transmission Rights Auction Market: Evidence from the U.S.

Midwest Energy Region” investigates a specific FTR market, namely the the FTR auction

market in the Midwest energy region (MISO), using a set of econometric estimation tools

such as linear regression, nonparametric kernel regression and goodness-of-fit tests. As a first

attempt to study this newly established market, we are interested in analyzing the performance
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of the MISO FTR auction market. The main results show that during the current sample

periods the MISO FTR market is systematically losing money (revenue insufficiency), which

on the other hand suggests that market participants on average exhibit some degree of risk

loving behavior. More data are needed in order to obtain meaningful economic analysis such as

estimating the impact of an agent’s risk preference on his willingness to pay for the premium of

FTR in this complex market. This is a joint work between myself and a fellow Ph.D. student

Wenzhuo Shang with me as the lead author. While Wenzhuo collects the initial data from

MISO web site and writes the draft of two sections, I conduct all the statistical estimation and

tests, finish the rest of sections and make final overall revisions.

Distinct from the first two studies, my third paper titled “Dynamic Testing of Wholesale

Power Market Designs: An Open-Source Agent-Based Framework” goes a further micro level to

examine the market design issues in the general wholesale power market context. Specifically,

we want to test the FERC’s WPMP design that has been implemented or adopted in major

wholesale power markets in the U.S. Strong opposition to the WPMP persists among some

industry stakeholders, due largely to a perceived lack of adequate performance testing. This

study reports on the agent-based modeling development and open-source implementation (in

Java) of a computational wholesale power market organized in accordance with core WPMP

features and operating over a realistically rendered transmission grid. Findings from a dynamic

5-node test case are presented for concrete illustration. With traders being able to submit

their offers strategically, it it found that traders (Generators) are able to acquire substantial

market power without any explicitly collusions. This suggests that the core WPMP design

features, as captured in our current computational framework, do not prevent the considerable

exercise of market power by traders. This is a joint work between myself and my major

professor Dr. Leigh Tesfatsion with me as the lead author. My responsibilities for completing

this paper include designing and implementing the underlying computation test bed using

Java, conducting intensive computational experiments, documenting experimental results and

reporting them in appropriate tables and figures, writing several sections of the paper. Dr.

Tesfatsion provides overall guidance of this project and contributes several sections of the
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write-up of the paper.

My last paper titled “DC Optimal Power Flow Formulation and Solution using QuadProgJ”

focuses on an critical optimization component of my third paper that the optimal hourly lo-

cational marginal prices (LMPs) and commitment/dispatch quantities have to be cleared by

a means of DC Optimal Power Flow (OPF) procedure in the wholesale power market. The

main contribution of this paper is to present an open-source strictly convex quadratic pro-

gramming (SCQP) solver QuadProgJ and shows how to use QuadProgJ to solve DC OPF

problems. This is another joint work between myself and my major professor Dr. Leigh Tes-

fatsion. My responsibilities for completing this paper includes designing and implementing the

QuadProgJ solver (in Java) using a well-know dual active-set algorithm, conducting intensive

accuracy tests using a suite of well-known QP test cases, reporting and documenting DC OPF

test results in appropriate tables and figures, and writing several sections of the paper. Dr.

Tesfatsion provides overall guidance of this project, involves with me during the development

of QuadProgJ and contributes several sections of the write-up of the paper.
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CHAPTER 2. U.S. FINANCIAL TRANSMISSION RIGHTS:

THEORY AND PRACTICE

2.1 Abstract

Financial Transmission Right (FTR) as a financial hedge instrument against volatile whole-

sale electricity prices has been widely adopted in the major U.S. wholesale power markets.

However, the current literature often shows that FTR decreases efficiency and reduces social

welfare. One main problem is that their models do not have a stochastic component. Since

FTR is designed to hedge the uncertain profit streams that market participants face, it is no

surprise to find that the absence of uncertainty renders the FTR being a source of inefficiency.

The contributions of this paper are in two-folds. First, it provides a comprehensive review of

both theoretical and empirical studies of FTRs in the current literature. Second, in this paper

I present a simple two-node electric network model and show that once stochastic shocks are

introduced the acquisition of optimal FTRs by the risk averse market traders will increase and

in general will strictly increase the social welfare compared with the case where there are no

FTRs available. This result presents a counterexample to the somewhat negative views about

FTRs held by other economists in the literature and provides some economic explanations

to the fact that FTRs are widely adopted as a financial hedge instrument in the major U.S.

wholesale power markets.

Keywords: Financial transmission rights, Wholesale electricity market, Locational marginal

price, Economic dispatch, Risk hedging, Congestion rent

JEL Codes: G1, L9, D4
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2.2 Introduction

As the largest regulated energy industry in the United States, the U.S. electric power

industry has undergone a tremendous change to become more competitive (U.S. Department

of Energy 2000). One of the central components in the competitive electricity market is to

have open access to the transmission system. In the U.S., the major transmission system can

be roughly divided into three regions, the East and West Interconnections and the Electricity

Reliability Council of Texas (ERCOT) as shown in Figure 1.

Figure 2.1 Three major U.S. interconnected transmission systems

Electricity as an economic good has its unique features. The most distinct one is that its

storage cost is enormously high such that almost all the electric power is delivered through

transmission lines for immediate consumption once it is produced. As indicated in a recent

National Transmission Grid Study (2002), there is now a tendency for U.S. transmission lines

to get congested and thus create substantial impact on the locational pricing system and

overall reliability of U.S. wholesale power market (see Stoft 2002 and Wilson 2002). The
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U.S. Federal Energy Regulatory Commission (FERC) responds to this issue by calling a new

independent institutional entity to manage and handle transmission assets, i.e., Independent

System Operator (ISO). By the nature of ISO, it is a non-profit organization whose purpose

is to monitor the power flow, collect generator’s supply offers and load serving entity (LSE)’s

demand bids, and calculate the optimal power dispatch taking into account various network

constraints such as energy balancing and thermal limit constraint.

To address the above congestion issue, it is a common practice in the U.S. wholesale power

market for ISO to issue financial transmission rights (FTRs). According to ISO New England

Manual (2003a), an FTR is a financial instrument that entitles the holder to receive compen-

sation for transmission congestion costs that arise when the transmission grid is congested in

the day-ahead market. The amount of compensation is based on differences in day-ahead loca-

tional marginal prices (LMPs) result from the dispatch of generators to relieve the congestion.

FTR entitles its holders to a share of the congestion rents collected in the day-ahead energy

market, thus provides the holder a financial hedge in the day-ahead market for the nodal price

difference between a node of receipt (source) to a node of delivery (sink).

In the literature four types of FTRs have been proposed 1, namely, point-to-point(PTP)

obligation, PTP option, flowgate (FG) obligation, and FG option (see Hogan 2002 and 2003).

An FTR option entitles its holders to revenue when day-ahead congestion occurs in the desired

direction. In contrast,an FTR obligation entitles it holders to a revenue when day-ahead

congestion occurs in the desired direction and obligates holders to a payment when day-ahead

congestion is in the opposite direction. When using PTP FTRs, market participants can obtain

any collection of FTRs corresponding to a feasible power flow in the transmission system. When

using FG FTRs, market participants can only obtain FTRs on pre-determined transmission

lines (flowgates), which are considered most at risk should the lines get congested.

The definition of a PTP FTR obligation can be more clearly illustrated in the following

example. Suppose there are two nodes in the transmission network, node A where power

is injected into the transmission network and node B where power is withdrawn from the
1As recommended in WPMP by FERC (2003), the U.S. electricity industry have favored PTP FTRs due to

its simplicity to implement and its successes in the early restructuring markets such as PJM and New York.
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transmission network. Assuming no transmission losses, the PTP FTR entitles the holder to

the difference in day-ahead LMP between node A and B. By its obligation nature, the FTR

holder receives a positive payment (LMPB −LMPA) from the ISO if LMPB exceeds LMPA.

On the other hand, the FTR holder is obligated to pay the ISO (LMPA − LMPB) if LMPA

exceeds LMPB. Thus the wholesale power market participants’s risks associated with different

LMPs are in principle decreased by purchasing FTRs.

To date, FTRs have been widely used to hedge against the potential loss in the transmission

congestion in major U.S. wholesale power markets. For example, FTR was introduced in the

PJM (Pennsylvania, New Jersey and Maryland) Interconnection since April 1998, in New

York since September 1999, in California since February 2000, and in New England since

March 2003. Note that FTRs have been known under different names in different U.S. power

markets. For instance, in PJM FTRs are referred to as Fixed Transmission Rights, in New

York Transmission Congestion Contracts (TCCs), in California Firm Transmission Rights, in

New England Financial Transmission Rights, and in Texas Transmission Congestion Rights

(TCRs).

In spite of the fact that FTR has been widely used in the major U.S. electricity market, it is

still a new market instrument that needs theoretical and empirical evaluations. There are issues

remaining questionable such as to what extent, if there is any, can FTRs help facilitate the

market to generate orderly, fair, and efficient outcomes despite attempts by market participants

to gain individual advantage through strategic behaviors? In addition, does the introduction

of FTRs create an appropriate incentive for individual firms to invest in the transmission

infrastructure?

Although many theoretical models have been proposed and empirical evidences have been

discussed in the literature, no attempt has been made to summarize the previous findings

about FTRs. The contribution of this paper is to first provide a comprehensive review of

various FTR findings from both theoretical and empirical perspectives, and then to better

illustrate economic efficiency improvement of introducing FTR in the presence of uncertainty,

a simple economic network model is presented and results are discussed. Therefore, this paper
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is organized as follows. The second section conducts a literature review on both theoretical

and empirical studies of FTRs in the U.S. wholesale power market. Section 3 presents the no-

rights benchmark model, which is essentially the competitive equilibrium framework applied

to the economic dispatch model in a simple two-node electric network. Section 4 then uses

the economic dispatch solution from the benchmark model as the building block to construct

a two-node FTR model where uncertainty is introduced as stochastic shocks to both demand

and supply sides. Section 5 discusses the conclusions and potential extensions of future work.

2.3 FTRs in Theory and Practice

2.3.1 Theoretical Studies of FTRs

FTRs and market power

Although FTR advocates argue that tradable FTRs should facilitate electricity trade in

the short run through the alleviation of transmission bottlenecks caused by congestion (see

Hogan(2003)), in the current economic literature, people hold more negative views toward

FTRs.

For example, in a well-known study, Joskow and Tirole (2000) reach a negative conclusion

about FTRs. In their two-node network model with cheap cost generators in the north node,

expensive cost generators in the south node, and a transmission line linking the North and

the South that has a fixed thermal capacity, they argue that the acquisition of financial rights

may enhance the market power in the South if the generators in the South are owned by a

monopoly firm. In addition, they carry out a welfare comparison and show that the social

welfare derived from the absence of transmission rights is at least as high as and in general

higher than the social welfare derived from the system with the financial transmission rights.

This striking result clearly indicates the negative views about FTRs held by the authors.

Responding to Joskow and Tirole’s result, Hogan (2000) provides an example which shows

that introducing financial rights enhances monopoly profits but it increases efficiency as well.

This is in contrast to Joskow and Tirole’s result which implies that the no-rights solution
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is always the most efficient one. Hogan’s paper differs from Joskow and Tirole in that the

monopolist controls generation at more than one location and some of its generation is at low

cost. The detailed derivation is in Cardel, Hitt and Hogan (1997). This example shows the

complex nature of the deregulated U.S. electricity market structure such as having significant

different results and policy implications due to different network configurations.

By using a Cournot model of competition in a congested transmission network, Oren (1997)

illustrates that even in the absence of market concentration, the expectation of congestion and

passive transmission rights can lead to implicit collusion among generators and departure from

marginal cost pricing. This invalidates the key premise underlying the indirect implementation

of transmission rights trading through optimal dispatch by the ISO. The author concludes that

passive transmission rights (in the form of transmission congestion contracts (TCCs)) will be

preempted by the active traders who will adjust their prices so as to capture the congestion

rents. Price distortions due to congestion and passive transmission ownership can result in

short and long term inefficiency.

By re-investigating the issues in Oren (1997), Stoft (1999) demonstrates that financial

transmission rights such as TCCs allow their owners to capture at least a portion, and some-

times all, of the congestion rents, and thus is shown to be effective in reducing market power.

Moreover, the extent to which TCCs can reduce the market power depends on the extent to

which total generation capacity exceeds the capacity of the largest generator. This result is

in contrast with Oren’s. The author states the reasons why his conclusions differ from Oren’s

in two perspectives. First, he points out that in Oren’s second example, which is intended to

be a Cournot model, is mistakenly constructed as a Bertrand model and then mis-analyzed.

When the model is re-built along Cournot lines, Oren’s conclusion is refuted. Second, in Oren’s

model, it is assumed that generators could not purchase financial transmission rights while in

Stoft’s model, this assumption is relaxed.

In another paper, Bushnell (1999) expresses his concern that transmission rights can be

manipulated by its owners to reduce transmission capacity made available to the competitive

market during hours in which there would otherwise be no congestion. In the short run, such
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withholding behavior could prove profitable for firms in several ways such as increasing the

value of local generators and the value of the transmission rights themselves. The author

illustrates his point by using a simple two-node network case with one fixed marginal cost

generator at one node and a downward-sloping demand at the other node. Lastly the author

argues that due to the concerns about transmission capacity withholding and the inherent

network uncertainties, the initial offering of transmission rights in California was to be limited

to a level below the full transmission capacity available to the California ISO.

Using human-subject experiment, Kench (2004) conducts an interesting study to test the

theoretical results in Joskow and Tirole (2000). Specifically, the author carries out a double-

oral auction (DOA) experiment to test the predictions of Joskow and Tirole’s theoretical results

for a radial electricity market without transmission rights, with financial transmission rights,

and with physical rights. The author found that physical rights lead to more “right” market

signals, decrease some market power, and remove an uncertainty about electricity transmis-

sion congestion better than financial rights or the absence of rights. However, the author also

pointed out that one should be very cautious in trying to interpret his experimental results

into policy implications because the stylized market setting in his paper does not capture many

intricacies (such as the “loop flow effect”) in the real world electricity markets.

FTRs and auction design issue

Bautista and Quintana (2005) develop a methodology to screen and discriminate FTRs

that may exacerbate the market power for some monopoly market participants. The proposed

methodology is based upon the use of relative hedging position ratios. These ratios comprise

the network configuration, market outcomes, and the participants position in the market, and

quantify the relationship between the positions of an FTR bidder in the energy market and

in the transmission rights allocation. The authors also point out that since an FTR scheme

has a reduced liquidity, which may be worsened if a discrimination such as in this study is

introduced. Due to the potential complexity for carrying out any regulatory intervention on

FTRs ownership, the authors suggest to build the FTRs framework upon their allocation to
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other entities, such as LSEs or traders, rather than generators.

Mendez and Rudnick (2004) propose a new congestion management system under nodal and

zonal dispatches with implementation of fixed transmission rights (FTR) and flowgate rights

(FGR), respectively. Using a static simulation model, which implements marginal theory where

congestion components are introduced in the pricing model, they show that the FTR model is

suitable for congestion management in deregulated centralized market structures with nodal

dispatch, while the FGR is suitable for decentralized markets. Their application indicates that

FGR presents advantages over FTR regarding signals on grid use, but its application is too

complicated to make its implementation attractive.

In a related study trying to accommodate both point-to-point and flowgate transmission

rights, O’Neill et al (2002) propose a “joint energy and transmission rights auction” (JETRA)

to allow transmission users to specify which type of transmission rights, point-to-point or flow-

gate, they prefer to use and reconfigure them over time. JETRA is able to simultaneously

accommodate flowgate and point-to-point options and obligations, along with energy produc-

tion and consumption futures. Under certain conditions, the authors prove that the auction is

revenue adequate for the market operator in the sense that payments to rights holders cannot

exceed congestion revenues.

FTRs and transmission investment and expansion

In another set of papers several authors address the issues of transmission investment or

expansion in the hope to find the best way to attract investment for the long-term expansion

of an electricity transmission network.

Joskow and Tirole (2003) examine the performance of a “merchant transmission” model

in which investment in electric transmission capacity rely upon competition and free entry to

exploit profitable transmission investment opportunities rather than on regulated monopoly

transmission companies. Under strict assumptions, the authors show that the merchant in-

vestment model is able to solve the natural monopoly problem traditionally associated with

electricity transmission networks. However, when the authors extend their model by introduc-
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ing assumptions that more accurately reflect the physical and economic attributes of trans-

mission networks, many attractive properties of the merchant model disappear and inefficient

transmission investment decisions are made.

In a related study, Kristiansen and Rosellon (2004) propose a merchant mechanism to

expand electricity transmission based on long-term FTRs. As the authors argue, the system

operator needs a protocol for awarding incremental FTRs that maximize investor’s preferences,

and preserves certain unallocated FTRs (or proxy awards) so as to maintain revenue adequacy.

They define a proxy award as the best use of the current network along the same direction

as the incremental awards, and develop a bi-level computational model for allocating long-

term FTRs according to this rule and apply it to different network topologies. They find

that simultaneous feasibility for a transmission expansion project crucially depends on the

investor-preference and the proxy-preference parameters.

In another interesting study, Rudkevich (2004) investigates the investment and bidding

strategies for firm transmission rights. The study first addresses the applicability of the

Markowitz portfolio theory to investing in firm transmission rights (FTRs) or transmission

congestion contracts (TCCs) typical for Northeastern U.S. electricity market. Specifically,

the author uses the principal component analysis to select subsets of statistically independent

FTRs/TCCs and obtain the necessary and sufficient conditions for arbitrage opportunities.

In the second part of paper, the author analyzes the profit-maximizing bidding strategies for

large players with significant Auction Revenue Rights (ARRs).

In a survey study on the topic of transmission expansion, Rosellon (2003) studies the

three existing approaches to electricity transmission expansion, i.e., transmission expansion

through long-term FTRs, through regulatory mechanisms and through strategic behavior of

generators (market power). The first approach relies on the auction of long-term FTRs by an

independent system operator (also known as the merchant approach). The second approach

is to provide a Transco with the incentive to expand transmission by making it confront the

social cost of transmission congestion. The last approach defines optimal expansion of the

transmission network according to the strategic behavior of generators. After comparing each
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Table 2.1 Overview of Theoretical Studies in FTRs

FTRs and Market Power FTR Auction Design Transmission Investment

Joskow and Tirole (2000) Bautista and Quintana (2005) Joskow and Tirole (2003)

Hogan (2000) Mendez and Rudnick (2004) Kristiansen and Rosellon (2004)

Oren (1997) O’Neill et al (2002) Rudkevich (2004)

Stoft (1999) Rosellon (2003)

Bushnell (1999)

Kench (2004)

approach’s advantage and disadvantage, the author concludes that there is no single mechanism

that guarantees the optimal expansion of the electricity transmission network, and suggest that

there may exists the second-best approach which is to combine the merchant and the regulated

transmission model.

The current literature of theoretical FTRs studies is summarized in Table 1.

2.3.2 Empirical Studies of FTRs

Siddiqui et al. (2003) analyze the public data from 2000 and 2001, and find out that New

York transmission congestion contracts (TCCs) provides market participants with a potentially

effective hedge against volatile congestion rents. However, the prices paid for TCCs system-

atically deviated from the associated congestion rents for distant locations and at high prices.

Based on their analyses, the authors suggest that there exists an inefficient market for TCCs

due to the fact that the price paid for the hedge not being in line with the congestion rents,

i.e., unreasonably high risk premiums are being paid. The authors then offer two possible

explanations to their empirical finding. One is the low liquidity of TCC markets and the other

is the deviation of TCC feasibility requirements from actual energy flows.

In response to Siddiqui et al. (2003) regarding the inefficient pricing of TCCs in New York

market, Deng et al. (2004) try to investigate further on the question that whether the price

deviations are due to price discovery errors which will eventually vanish or due to inherent

inefficiencies in the auction structure. They show that even with perfect foresight of average
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congestion rents the clearing prices for the FTRs depends on the bid quantity and therefore

may not be priced correctly in the FTR auction. The authors conclude that price discovery

alone would not remedy the discrepancy between the auction prices and the realized values of

the FTRs, and secondary markets or frequent reconfiguration auctions are necessary in order

to achieve such convergence.

In a practical study, Lyons et al. (2000) use simple numerical examples to show how the

FTRs work in a two-node network model and give a gentle introduction of various aspects

of FTRs such as property rights and transmission expansion, price hedging, and allocation of

FTRs. Also the authors conduct a market-wise study and show how various FTRs are handled

in PJM, New York and California markets. Their results are summarized and extended in

Table 2. Finally, the authors stress that although there is no universally superior model for

FTRs, they are still very useful tools in electricity markets with locational pricing.

In another survey study, Kristiansen (2003) investigates how FTRs are acquired and im-

plemented in a range of markets such as PJM, New York, New England, California, Texas,

and New Zealand. In each market, the author describes in detail the features of FTRs, some

design issues, strength and weakness, and the market performances in different FTR markets.

His result along with Lynos et al.(2000) is summarized in Table 2.

Denton and Waterworth (2002) conduct a comprehensive practical study about how FTRs

could be introduced in Australian National Electricity Market (NEM)2. The Settlements

Residue Auction (SRA) was established shortly after NEM to help market participants manage

risks. The authors start their report by stating the rationale for changing the SRA process

to create a better environment for implementing FTRs. They compare the FTRs in the U.S.

markets such as PJM and New England. Then they introduce a workable FTR solution in

line with the modified SRA and discuss how the proposed FTR solution addresses the critical

issues in the Australian electricity market.
2Although their report mainly focuses on the application in Australian national electricity market, there are

indeed many similarities between Australian market and major U.S. markets such as PJM, New York and New
England.
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Table 2.2 Comparison of FTRs in Major U.S. Wholesale Power Market
(Source: Kristiansen 2003, Lyons et al. 2000, NEPOOL FTR
manual 2003b, MISO FTR manual 2005)

PJM New York New England
Name Fixed Transmission Rights Trans. Congestion Contracts Financial Trans. Rights

Contract Obligations & options , Obligations, no hedge Obligations, no hedge
no hedge against losses against losses against losses

Duration Monthly auction, annual 6 months and 1, 2 and Monthly auction
network integration 5 year auction, monthly
service FTRs reconfiguration

Acquisition Network integration service, Centralized TCC auction, Auction, secondary market,
firm point-to-point service, direct sales, and secondary transmission updates, entities
auction, secondary market market paying congestion charges

Auction Monthly, single-round, Seasonal (multi-round), Monthly, single-round,
design uniform-price auction monthly reconfiguration uniform-price auction

uniform-price auction

Congestion Excess rents distributed to Excess rents offset trans. Excess rents distributed to
rents deficiencies in other periods, system cost, deficit rents FTR holders, deficit rents

deficient rents reduce covered by trans. owners reduce payments
payments proportionally proportionally

Distribution FTR auction revenues are All revenues received by FTR auction revenues
of revenues allocated among the regional trans. owners from the sale are distributed to sellers

transmission owners in of TCCs are credited against of FTRs and auction
proportion to their the trans. owner’s revenue rights recipients
transmission revenue cost of service
requirements

Website http://www.pjm.com/ http://www.nyiso.com/ http://www.iso-ne.com/

California Texas Midwest
Name Firm Transmission Rights Trans. Congestion Rights Financial Trans. Rights

Contract Option-like, no hedge Inter-zonal option Obligation, phase in option
against losses in the future

Duration Annual auction Monthly and annual auction 3 months or 1 year auction

Acquisition Auction, secondary market, Auction, secondary market Auction, secondary market,
hour-ahead market allocated based on existing

transmission rights

Auction Annual, multi-round Annual, monthly, single- Annual, seasonal(3 months),
design uniform-price auction round, 24 simult. auction monthly auction

Congestion Excess rents partly cover Any rent shortfall is uplifted Excess rents redistributed
rents the fixed costs of the grid to load and any surplus is to FTR holders

deficient rents reduce credited against other uplift
payments proportionally to load

Distribution Credited to trans. Credited to load entities in To be determined
of revenues owners proportion to their load

ratio share

Website http://www.caiso.com/ http://www.ercot.com/ http://www.midwestiso.org/
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2.3.3 Overview of the Two-stage FTR Model

Although the current literature expresses mixed opinions about FTRs, it is not unfair to

say more negative views are held toward FTRs (Joskow and Tirole 2000, Oren 1997, Bushnell

1999, Siddiqui et al. 2003, Deng et al. 2004, etc). While FTRs are widely adopted as a financial

hedging instrument to help market participants to reduce their risks in the major U.S. wholesale

power market, it seems not working very well. Why? Is it because of the complicated wholesale

power market structure, or because the market participants are still learning how to place the

bids and offers more efficiently, or because there is something fundamentally wrong about it?

Some close examination of previous work might give us some clues. For example, in a well-

known paper by Joskow and Tirole (2000), we found that although the authors demonstrated

that introducing FTRs can decrease the overall efficiency, enhance the market power and reduce

the welfare, their model seems to be too restrictive in the sense that there is no uncertainty

involved. Since FTR, by construction, is used as a financial instrument to hedge against

uncertain profit, if there is no uncertainty, the only conclusion that can be drawn is that FTR

at most will not do any good and may in general do worse than the case where there are no

FTRs available. In fact, Joskow and Tirole’s welfare comparison shows that the social welfare

in the absence of FTRs is as high as and in general strictly higher than that with FTRs in the

case of no uncertainty.

One contribution of this paper is to illustrate how a simple two-stage FTR model can work

to improve social welfare should there be any uncertainty. Specifically, we would like to address

the following fundamental question: when a source of uncertainty is introduced in the model,

does FTR matter? In addition we want to conduct a welfare comparison in the uncertainty

case to see whether introducing FTRs is able to improve the social welfare. We start in Section

3 (Stage 1) by constructing a benchmark model, which focuses on a two-node electric network

where there are one generator and one LSE at each node with parameterized marginal cost and

demand functions, supervised by an independent system operator (ISO). This is essentially the

competitive equilibrium (CE) case. By solving this benchmark model as the usual CE case,

we obtain a economic dispatch solution. Section 4 (Stage 2) presents the FTR model with
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stochastic shocks. Using the results from the benchmark model as building blocks, we then

solve for the optimal FTR hedge solutions, and show that once uncertainty (even in a very

simple form) is introduced, the acquisitions of optimal FTRs by the risk averse generators

and LSEs will increase and in general will strictly increase the social welfare compared with

the case where there are no FTRs available. This result thus serves as a counterexample to

the somewhat negative views of FTRs by other economists in the literature, and provides

some economic explanations to the fact that FTRs are widely adopted as a financial hedge

instrument in the major U.S. wholesale power markets.

2.4 The No-rights Benchmark Model

The benchmark model consists of a simple two-node electric network connected by a trans-

mission line with a thermal limit. There is only one good in this model: electric power, which

is supplied by a group of unregulated generating companies (or simply generators), and is

demanded by a group of Load Serving Entities (LSEs). LSEs can be thought of as the distri-

bution companies that can buy the “bundled” electric power in the wholesale market and resell

it to downstream retail consumers. There is also an Independent System Operator (ISO) that

operates the transmission network and manages the energy market. One of the main functions

of ISO is to serve as the central clearing house in the wholesale electric power market. In

summary, there are three types of agents in this model: generators, LSEs and ISO.

Furthermore, each LSE has a price-sensitive and downward sloping demand curve. Each

generator supplies electric power with a non-decreasing marginal cost. To obtain a dispatched

quantity of power, all generators submit their supply offers and all LSEs submit their demand

bids to ISO in the wholesale power market. ISO by its nature is a not-for-profit organization

and act as a “social planner” to maximize the total net benefit of generators and LSEs based on

their submitted offers and bids by solving the optimal quantities of power supply and demand

for each generator and LSE subject to the physical network constraints 3.
3This modelling framework is a simplified version of Standard Market Design(SMD) implemented by ISO

New England since March 2003. See ISO New England (2003a) for detailed descriptions.
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2.4.1 Model Specifications and Assumptions

To simplify the benchmark model, I make the following specifications and assumptions:

• There are only two nodes, namely node 1 and node 2, in this benchmark model. This

implies that power may either flow from node 1 to node 2 or node 2 to node 1 through

the transmission line with the maximum power flow equal to the thermal limit capacity

T (T > 0). Also assume there is no loss during power transmission.

• For simplicity, suppose there is only one generator at each node, i.e., G1 at node 1 and

G2 at node 2. Let QG1 and QG2 be the power supply quantities (injections) at node 1

and 2, respectively. The total cost function TCi(QGi), variable cost function V Ci(QGi),

and marginal cost function MCi(QGi) for generator Gi (i = 1, 2) are specified as follows:

TC1(QG1) = f1 + bS
1 QG1 +

1
2
aS

1 Q2
G1 (2.1)

TC2(QG2) = f2 + bS
2 QG2 +

1
2
aS

2 Q2
G2 (2.2)

V C1(QG1) = bS
1 QG1 +

1
2
aS

1 Q2
G1 (2.3)

V C2(QG2) = bS
2 QG2 +

1
2
aS

2 Q2
G2 (2.4)

MC1(QG1) = bS
1 + aS

1 QG1 (2.5)

MC2(QG2) = bS
2 + aS

2 QG2 (2.6)

where parameters (aS
i , bS

i , fi) are all positive for i = 1, 2.

• For simplicity, suppose there is only one LSE at each node, i.e., LSE1 at node 1 and

LSE2 at node 2. Let QL1 and QL2 be the power demand quantities (withdrawals) at

node 1 and 2, respectively. The demand function Dj(QLj) and gross consumer surplus

GCSj(QLj) for LSEj (j = 1, 2) are specified as follows:

D1(QL1) = bD
1 − aD

1 QL1 (2.7)

D2(QL2) = bD
2 − aD

2 QL2 (2.8)

GCS1(QL1) = bD
1 QL1 −

1
2
aD

1 Q2
L1 (2.9)
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GCS2(QL2) = bD
2 QL2 −

1
2
aD

2 Q2
L2 (2.10)

where parameters (aD
j , bD

j ) are all positive for j = 1, 2. After purchasing QLj amount of

power in the wholesale market, each LSEj can then sell the QLj amount of power to its

local downstream consumers and receive resale revenue equal to Rj
4

• There are no learning or strategic behaviors for both generators and LSEs. Each genera-

tor offers its true marginal cost function and each LSE bids its true demand function into

the electric power market. The information set consists of each generator’s TC, V C,MC

functions as well as each LSE’s GCS and demand functions, which can be characterized

by the structure parameter vector (aD
j , bD

j ; aS
i , bS

i , fi;T ) > 0 for i, j = 1, 2. This informa-

tion set is publicly known by all agents. In short there is no uncertainty or no private

information in this benchmark model.

• After receiving generator supply offers and LSE demand bids, ISO then solves a Eco-

nomic Dispatch (ED)5 problem by maximizing the total net benefit subject to a set

of physical power network constraints in the day-ahead power market6 to solve for the

optimal dispatch quantities for all generators and LSEs and derive the associated loca-

tional marginal prices7(LMPs) for each node. Consequently, each generator produces

QGi amount of power at the ISO’s dispatch and is paid by ISO the LMPk per unit of

its produced power for i, k = 1, 2, while each LSE purchases QLj amount of power at

the ISO’s dispatch and pays ISO the LMPk per unit of purchased power for j, k = 1, 2.

Recall that since there is one transmission line connecting the two nodes, the total power
4The downstream resale revenue for LSEj could be specified as Rj(QLj) = (βj − αjQLj)QLj for j = 1, 2,

where βj and αj are the parameters of aggregate demand function in the resale market at node 1 (j = 1) and
node 2 (j = 2).

5See the following section for a discussion of this ED problem formulation.
6According to ISO New England Standard Market Design (SMD), the U.S. wholesale power market is oper-

ated through a two-settlement system which consists of several submarkets including Day-Ahead, Real-Time,
Supply Re-offers, FTR, and bilateral markets to reduce uncertainty for market participants and ensure orderly,
fair, and efficient market outcomes. For simplicity, assume the scheduled quantities of powers in the Day-Ahead
market are exactly carried out into the Real-Time market, all generators submit their true marginal cost (so
no Supply Re-offer market is needed), and assume bilateral trades are prohibited. Thus in this paper only the
Day-Ahead (in this section) and FTR (in the next section) (sub)markets are considered.

7Roughly stated, locational marginal price at any given node is the minimum incremental cost of providing
one additional unit of power at that node.
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produced at a local node does not have to be the same with its local demand. For ex-

ample, some low-cost generator may produce more than its local demand and transfer

the “overproduced” power through the transmission line to fulfill the residual demand at

a high-cost generation node. However the power flow through the transmission line has

an upper limit equal to the line thermal capacity T . When the power flow reaches that

upper limit T , we call the line is congested. One important consequence of congestion

is that the LMPs will no long be the same across all nodes. Assuming no loss during

power transmission, the separation of LMPs creates the congestion rent(CR) (difference

between LMP1 and LMP2 multiplied by T ), which is accrued to ISO.

• To further simplify the model, assume the minimum production capacities for G1 and

G2 are both zero implying that it is feasible for generators to stop producing power while

bearing the fixed cost. Also assume the maximum production capacities for G1 and G2 are

both infinitely large so that the generators can meet arbitrarily high demands in the power

market. Therefore the locational marginal prices for node 1 and 2, LMP1 and LMP2,

are the last unit marginal cost for Generator 1 and 2 or the marginal unit of willingness

to pay for LSE 1 and LSE 2 when the thermal constraint T is binding; LMP1 and LMP2

become the same and are equal to the market clearing price of the aggregate demand and

supply functions when the thermal constraint is not binding, i.e., no line congestions.

• The benchmark model can best summarized in Figure 2.

2.4.2 Model Setup

Based on the above assumptions and specifications, this benchmark model can be formu-

lated as the Economic Dispatch (ED) problem8. As detailed in Stoft (2002), dispatch is the

process of determining generator output level for servicing the load demand by LSEs. Economic

Dispatch means that the dispatch process is efficient.

Specifically, the objective of the ED problem is to maximize the “total net benefit” (TNB)

subject to the balancing, non-negativity, and thermal limit constraints. The balancing con-
8The ED problem is essentially a constrained optimization problem.
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Figure 2.2 The two-node electric network benchmark model

straint should be respected because it represents the physical aspect of the electric network,

i.e., total power injections should be equal to total power withdrawals at any time and at any

node in the electric network. In our benchmark model, this requires that the power supplies

by G1 and G2 should be equal to power demands by LSE1 and LSE2. The non-negativity

constraint holds naturally since we only allow the real power production and purchasing in this

model, and exclude the speculative behaviors such as taking short positions in the wholesale

power market. Lastly the thermal limit constraints have to be observed because the power

flow between two nodes cannot exceed the thermal capacity limit of the transmission line.

When the thermal constraint becomes binding, it might be necessary to supply the next

unit of power by dispatching the relatively expensive local generation out of merit order, i.e.,

in place of the other generation with lower marginal cost. Locational marginal prices (LMPs)

reflect the cost of this out-of-merit-order dispatch. Separate LMPs are calculated for each

pricing location (node). Technically, LMPk at any node k is defined to be the change in total
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system variable costs that would result if one more unit of power were to be serviced at node

k. In our simple benchmark model, LMPk then reduces to the marginal cost of the last unit

of power for generator at node k, k = 1, 2. In the absence of binding thermal limit constraint,

and assuming no transmission losses, each node has the same LMP. Otherwise, however, price

separation can occur, meaning that different nodes can have different LMPs.

Next, TNB is defined as the sum of all LSE surpluses and all generator surpluses. In the

benchmark model, TNB is just the sum of surpluses from LSE1, LSE2, G1, G2. Geometrically,

TNB represents the summed area under the demand curve less the area under the supply curve

(marginal cost curve) over two nodes. Formally the model is set up as follows:

Maximize

TNB =
∫ Q

0
[D1(QL1)−MC1(QG1)]dQ +

∫ Q

0
[D2(QL2)−MC2(QG2)]dQ (2.11)

= [GCS1(QL1)− V C1(QG1)] + [GCS2(QL2)− V C2(QG2)] (2.12)

where

GCS1(QL1)− V C1(QG1) = (bD
1 QL1 −

1
2
aD

1 Q2
L1)− (bS

1 QG1 +
1
2
aS

1 Q2
G1) (2.13)

GCS2(QL2)− V C2(QG2) = (bD
2 QL2 −

1
2
aD

2 Q2
L2)− (bS

2 QG2 +
1
2
aS

2 Q2
G2) (2.14)

with respect to QG1, QG2, QL1, QL2

subject to:

QG1 + QG2 = QL1 + QL2 (balancing constraint) (2.15)

QG1 ≥ 0, QG2 ≥ 0, QL1 ≥ 0, QL2 ≥ 0 (non-negativity constraint) (2.16)

−T ≤ QG1 −QL1 ≤ T (thermal constraint for node 1) (2.17)

−T ≤ QG2 −QL2 ≤ T (thermal constraint for node 2) (2.18)

In this ED problem, we want to solve for the vector

s∗ = (Q∗
G1, Q

∗
G2, Q

∗
L1, Q

∗
L2)
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which maximizes (11) or (12) subject to (15) - (18). Based on this solution we can then derive

LMP1 and LMP2
9. Note that the ED solution vector s∗ is ISO’s dispatch quantities in the

day-ahead market, and LMP1 and LMP2 are the locational marginal price applied to node 1

and node 2, respectively.

2.4.3 The Economic Dispatch (ED) Solution

To present the solution to this ED problem in a more orderly fashion, it is proposed in this

paper to solve the ED problem in two steps. In the first step, assume the thermal limit T is so

large that the thermal constraints will never get binding (thus the two thermal constraints are

ignored), which simplifies the problem at hand to be a standard maximization problem. Then

use the solved optimal solutions to check if the thermal limit constraints are indeed binding or

not. If not binding, then problem is solved; if binding, then proceed to step 2. In step 2, resolve

the ED problem by adding one of the thermal limit constraint as the equality constraint. The

formal procedure of solving this model is presented as follows:

2.4.3.1 Step 1: Thermal constraint T is NOT binding

In this step, suppose the thermal limit T is so large that the thermal constraint will never

get binding. According to the model setup section, this is a standard optimization problem

with one equality constraint (the balancing constraint) and four inequality constraints (the

non-negativity constraints for QG1, QG2, QL1 and QL2). Use µ as the multiplier for equality

constraint and λ’s as the multipliers for inequality constraints, and formulate the Lagrangian

equation:

L = (bD
1 QL1 −

1
2
aD

1 Q2
L1)− (bS

1 QG1 +
1
2
aS

1 Q2
G1) + (bD

2 QL2 −
1
2
aD

2 Q2
L2)− (bS

2 QG2 +
1
2
aS

2 Q2
G2)

+µ(QG1 + QG2 −QL1 −QL2) + λG1QG1 + λG2QG2 + λL1QL1 + λL2QL2 (2.19)
9By definition, the locational marginal price (LMP) at node k is the minimum incremental cost of producing

one additional unit of power at node k. Recall in this benchmark model, we assume the zero minimum production
and infinitely large maximum production capacity, the minimum incremental cost of producing one more unit
of power is just the marginal cost at that node. Furthermore, as we will show in the Appendix 1 and 2, LMP
is indeed captured by the Lagrangian multiplier associated with the balancing constraint.
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For simplicity, only consider the case where all dispatched quantities are positive, i.e., all

non-negativity constraints are not binding 10, we obtain the following non-thermal-constraint

solution (denoted with a hat). (The detailed derivation is provided in Appendix 1):

Q̂G1 = (G1 + B1)/A (2.20)

Q̂G2 = (G2 + B2)/A (2.21)

Q̂L1 = (L1 + C1)/A (2.22)

Q̂L2 = (L2 + C2)/A (2.23)

where

G1 = D2B1 + aD
1 aS

2 B2, B1 = aD
1 A2C1, L1 = (D2 + aS

1 A2)B1 − aS
1 aS

2 B2, C1 = aS
1 A2C2;

G2 = D1B2 + aS
1 aD

2 B1, B2 = aD
2 A1C2, L2 = (D1 + aS

2 A1)B2 − aS
1 aS

2 B1, C2 = aS
2 A1C1;

A = D1A2 + D2A1;

A1 = aD
1 + aS

1 , B1 = bD
1 − bS

1 , C1 = bS
2 − bS

1 , D1 = aD
1 aS

1 ;

A2 = aD
2 + aS

2 , B2 = bD
2 − bS

2 , C2 = bS
1 − bS

2 , D2 = aD
2 aS

2 .

Now that we solve the non-thermal-constraint ED problem and need to examine closely the

solution (Q̂G1, Q̂G2, Q̂L1, Q̂L2) to determine whether the thermal limit constraints are actually

binding or not. Before proceeding further, we formally define the term thermal constraint is

not binding, thermal constraint is binding from 1 to 2, and thermal constraint is binding from

2 to 1 as follows:

Definition 1 In this two-node electric network model, after solving the non-thermal-constraint

ED problem and obtaining the solution vector (Q̂G1, Q̂G2, Q̂L1, Q̂L2), regarding the thermal limit

T, we say,

• T is binding from 1 to 2 if Q̂G1 − Q̂L1 > T or Q̂G2 − Q̂L2 < −T ;

• T is binding from 2 to 1 if Q̂G2 − Q̂L2 > T or Q̂G1 − Q̂L1 < −T .
10To be exhaustive, we find 9 other possible solution cases, i.e., (1) QG1 = 0; (2) QG2 = 0; (3) QL1 = 0;

(4) QL2 = 0; (5) QG1 = QL1 = 0; (6) QG1 = QL2 = 0; (7) QG2 = QL1 = 0; (8) QG2 = QL2 = 0; (9)
QG1 = QG2 = QL1 = QL2 = 0.
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• T is not binding if |Q̂G1 − Q̂L1| ≤ T or |Q̂G2 − Q̂L2| ≤ T ;

Remarks: this definition elaborates the relationship between the optimal ED solution and

network physical conditions. Recall in this step we assume the thermal constraint will not be

binding and proceed to solve the ED problem, and the solution is the actual dispatched quantity

that each generator will produce and each LSE will purchase. If the ED solution requires at

node 1 what G1 produces (Q̂G1) be greater than what LSE1 purchases (Q̂L1), then Q̂G1− Q̂L1

amount of power will be transported from node 1 to node 2 through the transmission line to

meet the residual demand Q̂L2− Q̂G2
11 at node 2. Nevertheless, the power flow is not allowed

to exceed the upper limit of thermal capacity (T ) for the transmission line. So if that does

happen, i.e., Q̂G1 − Q̂L1 > T or equivalently, Q̂L2 − Q̂G2 > T , we call the thermal constraint

is binding with power flowing from node 1 to node 2, or use the definition, T is binding from

1 to 2. In this case, the non-thermal-constraint ED solution is not appropriate any more, and

we will need to continue on to solve the ED problem in Step 2.

If, on the other hand, the ED solution requires that at node 2 what G2 produces (Q̂G2) be

greater than what LSE2 purchases (Q̂L2), then Q̂G2−Q̂L2 amount of power will be transported

from node 2 to node 1 through the transmission line to meet the residual demand, which is

equal to Q̂L1 − Q̂G1 at node 1. By the similar argument, the thermal constraint is binding

with power flowing from node 2 to node 1, or use the definition, T is binding from 2 to 1.

In this case, again we will need to continue on to solve the ED problem in Step 2 since the

non-thermal-constraint ED solution is no longer valid.

If the power flow in the above two cases indeed does not exceed thermal limit T , i.e.,

|Q̂G1−Q̂L1| ≤ T or |Q̂G2−Q̂L2| ≤ T , we call T is not binding12. In this case, the non-thermal-

constraint ED solution is the right solution we seek, i.e., the solution vector is

s∗ = (Q∗
G1, Q

∗
G2, Q

∗
L1, Q

∗
L2)

11Note that the balancing constraint is observed here, i.e., extra production meets residual demand implying
ˆQG1 − Q̂L1 = Q̂L2 − ˆQG2, which is equivalent to the balancing constraint ˆQG1 + ˆQG2 = Q̂L1 + Q̂L2
12In this two-node benchmark model, there is small likelihood that the ED solution requires what Generator

1 produces happen to be the same as what LSE 1 purchases. Then by the balancing constraint, this implies that
what Generator 2 produces has to be the same as what LSE 2 purchases. So there is zero power flow between
node 1 and node 2. This case certainly falls into the category of “T is not binding”.
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where

Q∗
G1 = Q̂G1

Q∗
G2 = Q̂G2

Q∗
L1 = Q̂L1

Q∗
L2 = Q̂L2

LMP1 = LMP2 = (D2E1 + D1E2)/A

where A, D1, D2 are as previously specified and E1 = aD
1 bS

1 + aS
1 bD

1 , E2 = aD
2 bS

2 + aS
2 bD

2 .

By the nature of this problem, the thermal constraint is not binding, each generator offers

its true marginal cost function, each LSE bid its true demand functions, and ISO acts as a

“social planner” trying to maximize the total net benefit taking into account of all generator’s

production cost and all LSE’s willingness to pay, and there is no strategic behaviors or any

other system distortions. From the standard microeconomics point of view, this is both the

competitive equilibrium and Pareto optimal outcome. LMPs are the same across two nodes as

a result of aggregate market (node) clearing process 13.

2.4.3.2 Step 2: Thermal constraint T is binding

Based on Step 1, if we know T is binding from 1 to 2, i.e., Q̂G1 − Q̂L1 > T , we can set

QG1 − QL1 = T , the ED problem does not change from Step 1 other than adding one more

constraint QG1 −QL1 = T . Denoting µ’s as the multipliers for equality constraints and λ’s as

the multipliers for inequality constraints, and form the Lagrangian equation as follows:

L = (bD
1 QL1 −

1
2
aD

1 Q2
L1)− (bS

1 QG1 +
1
2
aS

1 Q2
G1) + (bD

2 QL2 −
1
2
aD

2 Q2
L2)− (bS

2 QG2 +
1
2
aS

2 Q2
G2)

+µB(QG1 + QG2−QL1−QL2) + µT (T −QG1 + QL1) + λG1QG1 + λG2QG2 + λL1QL1 + λL2QL2

(2.24)
13It is worth mentioning that when thermal constraint is not binding, the ED solution can also be obtained

through the market clearing point of the aggregate supply (marginal cost) and aggregate demand curves, i.e.,
finding the aggregate market clearing price (the common LMP) and referring it back to the individual demand
and supply curves to obtain the ED solution.
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For simplicity, only consider the case where all dispatched quantities are positive, i.e.,

all non-negativity constraints are not binding 14, we obtain the following thermal-constraint-

binding solution (Q∗
G1, Q

∗
G2, Q

∗
L1, Q

∗
L2) (The detailed derivation is provided in Appendix 2):

Q∗
G1 = (B1 + aD

1 T )/A1 (2.25)

Q∗
G2 = (B2 − aD

2 T )/A2 (2.26)

Q∗
L1 = (B1 − aS

1 T )/A1 (2.27)

Q∗
L2 = (B2 + aS

2 T )/A2 (2.28)

LMP1 = (E1 + D1T )/A1 (2.29)

LMP2 = (E2 −D2T )/A2 (2.30)

where

A1 = aD
1 + aS

1 , B1 = bD
1 − bS

1 , D1 = aD
1 aS

1 , E1 = aD
1 bS

1 + aS
1 bD

1 ;

A2 = aD
2 + aS

2 , B2 = bD
2 − bS

2 , D2 = aD
2 aS

2 , E2 = aD
2 bS

2 + aS
2 bD

2 .

Similarly, if, from Step 1, we know T is binding from 2 to 1, i.e., Q̂G2 − Q̂L2 > T ,

we can set QG2 − QL2 = T , and obtain the following thermal-constraint-binding solution

(Q∗
G1, Q

∗
G2, Q

∗
L1, Q

∗
L2):

Q∗
G1 = (B1 − aD

1 T )/A1 (2.31)

Q∗
G2 = (B2 + aD

2 T )/A2 (2.32)

Q∗
L1 = (B1 + aS

1 T )/A1 (2.33)

Q∗
L2 = (B2 − aS

2 T )/A2 (2.34)

LMP1 = (E1 −D1T )/A1 (2.35)

LMP2 = (E2 + D2T )/A2 (2.36)
14To see the complete solutions, refer to Appendix 2.
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2.4.4 Solution Discussion

Based on the two-step ED solution and the associated locational marginal prices LMP1

and LMP2, we can obtain the following propositions:

Proposition 1 In the two-node electric network model, when thermal constraint T is binding,

power flows from node 1 to node 2 (or node 2 to node 1) if and only if LMP2 > LMP1

(or LMP1 > LMP2)(assuming the dispatched quantities are all positive in the ED solution).

Furthermore,

(∗1) T is binding from 1 to 2 ⇔ LMP2 > LMP1 ⇔ Ω > T (2.37)

(∗2) T is binding from 2 to 1 ⇔ LMP2 < LMP1 ⇔ Ω < −T (2.38)

(∗3) T is NOT binding ⇔ LMP2 = LMP1 ⇔ −T ≤ Ω ≤ T (2.39)

where

Ω = (A1E2 −A2E1)/(D1A2 + D2A1);

A1 = aD
1 + aS

1 , D1 = aD
1 aS

1 , E1 = aD
1 bS

1 + aS
1 bD

1 ;

A2 = aD
2 + aS

2 , D2 = aD
2 aS

2 , E2 = aD
2 bS

2 + aS
2 bD

2 .

Proposition 1 has shown the relationship between the power flow direction and magnitude

of LMPs under the condition that the thermal constraint is binding in the two-node electric

network model15. Recall that if the thermal constraint is not binding, even if there is power

flow, the LMPs will be the same across two nodes (see the Step 1 ED solution). So this

proposition basically asserts that whenever the thermal constraint T is binding, the power

(which is equal to T ) always flows from low LMP node to high LMP node in a two-node

network model. This result can be derived mathematically from the ED solution and thermal

constraint binding conditions in this benchmark model. The detailed proof of Proposition 1 is

provided in Appendix 3.

The economic intuition behind this proposition is that the generator at the high LMP node

has a high marginal cost and the generator at the low LMP node has a low marginal cost16.
15However, as the counter example in Kirschen and Strbac (2004) shows, the result in this proposition does

not generalized to the case where the number of nodes is greater than or equal to three due to the externality
brought by the “loop flow” effect.

16Recall LMP is defined as the last unit marginal cost of the generator at the local node
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So when ISO, acting as a TNB maximizer, dispatches the high cost generator to produce less

than its local demand and the low cost generator to produce more than its local demand and

transfer the excess supply (which is equal to T ) over the transmission line to meet the excess

demand (which is equal to T ) in the high LMP node, the power is indeed flowing from low

LMP node to high LMP node. As we will see in the later section, this proposition serves as

the crucial foundation to derive FTR values,

Proposition 2 In the two-node electric network model, the ED solution guarantees each gen-

erator’s profit has a function form as:

πGk =
1
2
aS

k Q2
Gk − fk , ∀ k = 1, 2 (2.40)

and each LSE’s profit has a function form as:

πLk = Rk(QLk)− LMPkQGk ∀ k = 1, 2 (2.41)

Proof: As the ED solution suggests, in the benchmark model, regardless whether thermal

constraint is binding or not, each generator submitting its true marginal cost function produces

the dispatched quantity QGk and receives revenue equal to LMPkQGk while incurring a total

cost equal to fk + bS
k QGk + 1

2aS
k Q2

Gk. Also recall that LMPk is equal to the last unit marginal

cost of generator k for k = 1, 2. The profit function of generator k is:

πGk = LMPkQGk − TCk(QGk)

= (bS
k + aS

k QGk)QGk − (fk + bS
k QGk + 1

2aS
k Q2

Gk)

= 1
2aS

k Q2
Gk − fk , ∀ k = 1, 2

Similarly, each LSE submitting its true demand function gets the dispatched quantity QLk and

receives revenue equal to Rk(QLk) from downstream consumers while paying a total amount

of LMPkQLk for purchasing the power energy. The profit function of LSE k is:

πLk = Rk(QLk)− LMPkQGk ∀ k = 1, 2

This proposition shows that in the benchmark model, if generator Gk gets dispatched it

will produce QGk to cover its fixed cost fk. Note that if a generator does not get any dispatch,
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then Gk must bear the negative profit equal to its fixed cost −fk. Similarly, if LSEk gets

demand dispatch it will purchase QLk to meet its downstream consumer demand and acquires

profit equal to its resale revenue less its payment.

Proposition 3 In this two-node electric network model, the social welfare can be measured by

total net benefit (TNB), and TNB increases as the thermal limit T increases, provided that the

thermal constraint is still binding. The comparative statics are shown as follows:

∂TNB

∂T
=


E2
A2
− E1

A1
−
(

D1
A1

+ D2
A2

)
T > 0 iff T is binding from 1 to 2;

E1
A1
− E2

A2
−
(

D1
A1

+ D2
A2

)
T > 0 iff T is binding from 2 to 1.

(2.42)

where

A1 = aD
1 + aS

1 , D1 = aD
1 aS

1 , E1 = aD
1 bS

1 + aS
1 bD

1 ;

A2 = aD
2 + aS

2 , D2 = aD
2 aS

2 , E2 = aD
2 bS

2 + aS
2 bD

2 .

The proof is provided in Appendix 4. This proposition has a rich economic meaning and

important policy implications. It states that if the thermal limit of transmission line T can be

increased it will increase TNB17 and thus lead to a more efficient production and a higher social

welfare, provided that T is still binding. (Once the thermal constraint T becomes non-binding,

according to the ED solution, we have already obtained the first-best outcome in the sense that

it’s both competitive and Pareto optimal solution. Further investment in the transmission line

will thus be a waste of resources, provided that there is no uncertainty.) However, expanding

the capacity of transmission line (so as to increase the thermal limit T ) involves issues such as

“free ride” due to its public good feature. So how to create incentives for market participants

to make transmission investment remains an important and yet challenging concern to ISO.

To finish the benchmark model and proceed to the next section, we define the definition of

congestion rent.
17Recall that total net benefit (TNB) consists of two components, consumer surplus (CS) and producer surplus

(PS). This proposition only shows that TNB increases when thermal limit T increases. It does not indicate the
individual effect of CS and PS. As a matter of fact, in one of their examples, Kirschen and Strbac (2004) shows
that when the thermal limit T increases, in some circumstances, CS will decrease and then increase while PS
is monotonically increasing. So the policy implication is that to promote the idea of transmission investment
may improve the payoffs of generators at the cost of worsening the payoff of LSEs (for some range of thermal
capacity T ) although the total net effect is Pareto improvement.
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Definition 2 In the two-node electric network model, when thermal constraint is binding, i.e,

the transmission line is congested, ISO acquires the congestion rent (CR) as its revenue, which

is equal to the difference in LMPs multiplied by T , that is,

CR = |LMP2 − LMP1|T (2.43)

Remarks: (a) When the thermal constraint T is binding from 1 to 2, i.e., T amount of power

flowing from node 1 to node 2. At node 1, G1 receives revenue LMP1 ∗ QG1 from ISO and

LSE1 makes payment LMP1 ∗ QL1 to ISO. Since T is binding from 1 to 2, QG1 − QL1 = T .

Therefore ISO has a revenue deficit equal to −LMP1 ∗ T . Conversely, at node 2, G2 receives

revenue LMP2 ∗ QG2 from ISO and LSE2 makes payment LMP2 ∗ QL2 to ISO. Since T is

binding from 1 to 2, QL2−QG2 = T . Therefore ISO has a revenue surplus equal to LMP2 ∗T .

The ISO’s clearing process can be expressed as:

ISO’s revenue = −LMP1QG1 + LMP1QL1 − LMP2QG2 + LMP2QL2

= −LMP1T + LMP2T

= (LMP2 − LMP1)T

Hence the ISO’s revenue (congestion rent) is equal to (LMP2−LMP1)T . This congestion rent

is positive since LMP2 > LMP1 when T is binding from 1 to 2 by Proposition 1.

(b) On the other hand, when the thermal constraint T is binding from 2 to 1, i.e., T amounts

of power flowing from node 2 to node 1, by the similar argument, the congestion rent accrued

to ISO is equal to (LMP1 − LMP2)T . This congestion rent is positive since LMP1 > LMP2

when T is binding from 2 to 1 by Proposition 1.

Hence by (a) and (b) we conclude that when thermal constraint is binding the congestion

rent accrued to ISO is equal to |LMP2 − LMP1|T . This is a natural consequence of having

a binding thermal constraint. In other words, the fact that thermal constraint is binding

implies that the more expensive generation has been dispatched locally which could otherwise

be serviced by the less expensive generation had the thermal constraint were not binding.

Note that the congestion rent can be related to the tariff issue in the international trade

literature with the difference that tariff is imposed by government to purposely protect domestic
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producers while congestion rent is the natural outcome of having a congested transmission

line. Just like in international trade, decreasing the tariff would increase total social welfare,

decreasing the congestion rent, thus increasing thermal limit T , would also enhance total net

benefit (TNB) in this two-node electric network model(see Proposition 3).

2.5 The FTR Model under Network Uncertainty

Since the benchmark model depends exclusively on the structure parameters (aD
j , bD

j ; aS
i ,

bS
i , fi; T ∀ i, j = 1, 2) that are fixed and known to public, there is no uncertainty and no private

information, which implies that the ED solution derived from the benchmark model is already

the competitive equilibrium (first-best) outcome. Therefore there is no incentive for agents to

purchase FTRs, and introducing FTRs can at best do no good to the model economy. Indeed

as Joskow and Tirole (2000) indicate in their model, the existence of FTRs in the absence of

uncertainty will only decrease social welfare compared with the case there is no FTRs available.

However, the benchmark model is very important because the ED solution and corresponding

propositions serve as the building blocks to solve for the FTR model in this section.

Since the absence of uncertainty dooms the fate of FTRs, we are now interested to see

whether introducing uncertainty into this model would create an incentive for agents to pur-

chase FTRs, and if yes, to what extent could FTRs possibly help enhance the social welfare.

Based on the benchmark case, we will introduce a simple source of uncertainty into the

model: the parameter values that characterize the cost attributes of generators and demand

attributes of LSEs are now under stochastic shocks so that the direction of power flow and

the magnitude of LMPs are no longer known in advance. This should create an incentive for

both generators and LSEs to hedge against their uncertain profit streams through purchasing

FTRs. We will develop a formal model to investigate this hypothesis and analyze the associated

welfare effects.

Recall that a financial transmission right (FTR) is a financial hedging instrument that

entitles the holder to receive compensation for transmission congestion costs that arise when a

transmission line is congested. The Wholesale Power Market Platform (WPMP) proposed by
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FERC (2003) recommends that transmission congestion be managed by the ISO through the

issuance of point-to-point (PTP) FTRs obligation in the day-ahead power market. Holders of

PTP FTR obligations would be charged or credited based on the congestion components in

day-ahead market LMPs.

Two issues here need to be clarified before we proceed further. First, recall that there are

four types of FTRs (PTP obligation, PTP option, FG18 obligation, and FG option) currently

available in the U.S. wholesale power markets. For simplicity, this model investigates only the

first one, namely, the PTP FTR obligation. Hereafter if not stated explicitly, FTR means PTP

FTR obligation. The second issue is concerned with the time horizon of the model. Recall that

in this model, generators and LSEs can purchase FTRs to hedge against their future profit in

the day-ahead power market. So the FTR market works as a forward market (denoted with

time t = 0), and day-ahead power market works as a spot market (denoted with time t =

1). Hence terms such as FTR forward market or day-ahead spot market should not cause any

confusions.

2.5.1 Model Specifications and Assumptions

• This model consists of two markets, one is FTR forward market and the other is day-

ahead power market. The basic day-ahead power market structure is the same as the

benchmark model in the last section, i.e., the two-node electric network model with one

generator and one LSE at each node and an ISO in the middle to manage the transmission

network and collect the congestion rent if the line is congested. All the cost and demand

function forms remain the same as those in the benchmark model. Also for simplicity,

assume the dispatched quantities are all positive from the ED problem in the benchmark

model.

• To make the case of FTR interesting, assume the thermal limit constraint T is so small

that it is always binding. The justification is that if the thermal constraint is not binding,

there will be no price separation, i.e., LMP1 = LMP2, which directly implies that the
18FG stands for flowgate, which is mainly implemented by ERCOT in Texas and partly implemented by

CAISO in California.
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value of FTR based on the difference of LMPs becomes zero for sure regardless whether

there is uncertainty or not. Therefore to preclude this trivial case, T is assumed to be

binding all the time.

• Introduce a stochastic shock to the two-node electric network model with a binding

thermal limit constraint T : in the FTR forward market (t=0) all agents know they will

be in one of the two states, state 1 or state 2, in the day-ahead power spot market (t=1).

If agents are in state 1, T will be binding from node 1 to node 2 with probability prob;

if in state 2, T will be binding from node 2 to node 1 with probability 1 - prob. Then

according to Proposition 1, we have: state 1 : T is binding from 1 to 2 ⇔ LMP2 > LMP1 ⇔ Ω > T with prob;

state 2 : T is binding from 2 to 1 ⇔ LMP2 < LMP1 ⇔ Ω < −T with 1 - prob.

To differentiate the notations in two states, denote the realized values of parameters in

state 1 with ′ and state 2 with ′′. All the structure parameters except thermal limit T

are random variables denoted by ˜such that

ãZ
k =

 aZ′
k with prob;

aZ′′
k with 1 - prob, ∀ k = 1, 2;Z = D,S.

b̃Z
k =

 bZ′
k with prob;

bZ′′
k with 1 - prob, ∀ k = 1, 2;Z = D,S.

f̃k =

 f ′k with prob;

f ′′k with 1 - prob, ∀ k = 1, 2. state 1 : T is binding from 1 to 2 ⇔ LMP ′
2 > LMP ′

1 ⇔ Ω′ > T with prob;

state 2 : T is binding from 2 to 1 ⇔ LMP ′′
2 < LMP ′′

1 ⇔ Ω′′ < −T with 1 - prob.

In reality, the stochastic shocks may come from various sources. For example, weather

change may suddenly increase or decrease LES’s demand attributes. Or the price volatil-

ity of raw material for producing electricity such as coal or natural gas may suddenly

increase or decrease generator’s cost attributes. Since these kinds of changes are out of
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control of any market participants, it seems to be reasonable to introduce these random

shocks into the model to create a source of uncertainty.

• Introduce two types of FTRs in this model, FTR12 and FTR21. (a) Define FTR12 as

the PTP FTR obligation that obligates the owner to get paid if thermal constraint T is

binding from 1 to 2 or get charged if thermal constraint T is binding from 2 to 1. The

total amount of payments or charges are equal to the number of FTR contracts times

LMP2 − LMP1. (b) Similarly, define FTR21 as the PTP FTR obligation that obligates

the owner to get paid if thermal constraint T is binding from 2 to 1 or get charged if

thermal constraint T is binding from 1 to 2. The total amount of payments or charges

are equal to the number of FTR contracts times LMP1 − LMP2.

• In this model, it is ISO who has the authority to issue these two types of FTRs at pre-

announced prices. Generators and LSEs can choose to buy these FTR contracts from ISO

by paying the corresponding FTR prices and benefit from its payoffs. On the other hand,

ISO receives the FTR sales revenue while paying for its associated payoffs to generators

or LSEs. Recall that ISO still receive certain amount of congestion rent (CR) (what

differs from the benchmark model is that now ISO does not know exactly how much CR

it will obtain at time t = 0, but it can use the expected CR as an approximation). So

the ISO’s revenue adequacy condition is respected in expectation. Lastly, ISO also sets

the maximum amounts of FTRs for sale.

• Relying on the literature of corporate risk management, which argues that firms could

benefit from hedging market risks (Stulz (1990), Froot et al. (1993)), it is assumed in

this study that firms (generators and LSEs) in the electric power market are risk averse

and are likely to benefit from reducing the risk of their profits. Therefore, we assume

generators and LSEs are risk averse with a constant relative risk aversion (CRRA) utility

function. Furthermore, to make the calculation simple, assume all generators and LSEs

possess a logarithmic utility function.

• Finally in this model, assume generators and LSEs can only buy FTRs (can take long
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positions) but they cannot sell them (cannot take short positions), i.e., the FTR sec-

ondary market is not available in this model. Furthermore, note G1 and LSE2 will only

buy FTR12 and G2 and LSE1 will only buy FTR21. The reason is that since the agents

are all assumed to be risk averse, they will not be willing to purchase a financial instru-

ment that will make the risk of their profits even higher. For example, if G1 can buy

FTR21, it will only make its profit stream more volatile. That is, when G1 buys FTR21,

if LMP1 > LMP2, FTR12 can bring LMP1 − LMP2 amount of per contract profit to

G1, but G1 is already paid by the high LMP1; similarly, if LMP1 < LMP2, G1 will incur

LMP1 − LMP2 amount of per contract loss for buying FTR21 , but G1 is already paid

by the low LMP1. So purchasing the FTR12 will only make the G1’s profit stream even

riskier. Similar arguments apply to G2, L1 and L2 too.

2.5.2 Model Setup

Generator and LSE total profits come from two sources: profit from power transactions

(supply or demand) and profit from holding FTRs.

Denote Gk’s profit from power production as the random variable π̃Gk. Then by Proposition

2, we have:

π̃Gk =

 π′Gk = LMP ′
kQ

′
Gk − TCk(Q′

Gk) = 1
2aS′

k Q′2
Gk − f ′k with prob;

π′′Gk = LMP ′′
k Q′′

Gk − TCk(Q′′
Gk) = 1

2aS′′
k Q′′2

Gk − f ′′k with 1 - prob, ∀ k = 1, 2.

(2.44)

Denote LSEk’s profit from bulk power purchasing at the wholesale market and reselling it

to downstream consumers as the random variable π̃Lk. Then by Proposition 2, we have:

π̃Lk =

 π′Lk = Rk(Q′
Lk)− LMP ′

kQ
′
Lk with prob;

π′′Lk = Rk(Q′′
Lk)− LMP ′′

k Q′′
Lk with 1 - prob, ∀ k = 1, 2.

(2.45)

where Q′
Gk and Q′

Lk are the Step 2 thermal-constraint-binding ED solution (binding from

1 to 2) in the benchmark model, and Q′′
Gk and Q′′

Lk are the Step 2 thermal-constraint-binding

ED solution (binding from 2 to 1) in the benchmark model. Furthermore, to make the case

interesting, it is reasonable to assume 1
2aS′

k Q′2
Gk > f ′k and 1

2aS′′
k Q′′2

Gk > f ′′k so that π̃Gk > 0.
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This means in either state, the generator has a positive production profit thus does not go

bankrupt. For the similar reason, assume Rk(Q′
Lk) > LMP ′

kQ
′
Lk and Rk(Q′′

Lk) > LMP ′′
k Q′′

Lk

so that π̃Lk > 0.

Denote FTR12’s per contract payoff function as the random variable H̃12. By the definition

of an FTR and LMP solutions from Step 2 benchmark model, we have:

H̃12 =

 H ′
12 = LMP ′

2 − LMP ′
1 = (A′

1E′
2−A′

2E′
1)−(D′

2A′
1+D′

1A′
2)T

A′
1A′

2
> 0 with prob;

H ′′
12 = LMP ′′

2 − LMP ′′
1 = (A′′

1E′′
2−A′′

2E′′
1 )+(D′′

2 A′′
1+D′′

1 A′′
2 )T

A′′
1A′′

2
< 0 with 1 - prob.

(2.46)

Denote FTR21’s per contract payoff function as the random variable H̃21. By the definition

of an FTR, we have H̃21 = −H̃12.

At this point, it may be of some interest to know the relationship between the FTR payoff

spread and the thermal limit T . Define the FTR payoff spread (FTRSP ) as the net difference

in the realized FTR payoffs in two states (|H ′−H ′′|). The following proposition will show that

the increasing thermal limit T will always decrease the FTR payoff spread FTRSP .

Proposition 4 Define the FTR payoff spread as the net difference in the realized FTR payoffs

in two states, that is, FTRSP
12 = H ′

12 − H ′′
12 and FTRSP

21 = H ′′
21 − H ′

21. Then we have the

following:
∂FTRSP

12

∂T
< 0,

∂FTRSP
21

∂T
< 0 (2.47)

Proof: From the definition of FTR payoff function and FTR payoff spread, we have:

∂FTRSP
12

∂T
=

∂H ′
12

∂T
− ∂H ′′

12

∂T

= −D′
2A

′
1 + D′

1A
′
2

A′
1A

′
2

− D′′
2A′′

1 + D′′
1A′′

2

A′′
1A

′′
2

< 0 (since all parameters are positive)

∂FTRSP
21

∂T
=

∂H ′′
21

∂T
− ∂H ′

21

∂T

= −D′′
2A′′

1 + D′′
1A′′

2

A′′
1A

′′
2

− D′
2A

′
1 + D′

1A
′
2

A′
1A

′
2

< 0 (since all parameters are positive)

Q.E.D.
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Now let’s look at ISO’s revenue components. Similar to generators and LSEs, ISO’s total

revenue comes from two parts as well: one from collecting the congestion rent and the other

from selling FTRs.

Denote the congestion rent that accrues to ISO as the random variable C̃R. Then by

Definition 2, we have:

C̃R =

 CR′ = (LMP ′
2 − LMP ′

1)T with prob;

CR′′ = (LMP ′′
1 − LMP ′′

2 )T with 1 - prob.
(2.48)

So the total profits for G1, G2, LSE1, and LSE2 and the total revenue for ISO can be

expressed as random variables Π̃G1, Π̃G2, Π̃L1, Π̃L2 and Π̃ISO, respectively, that is,

Π̃G1 = π̃G1 + (H̃12 − η12)FTR12(G1) (2.49)

Π̃G2 = π̃G2 + (H̃21 − η21)FTR21(G2) (2.50)

Π̃L1 = π̃L1 + (H̃21 − η21)FTR21(L1) (2.51)

Π̃L2 = π̃L2 + (H̃12 − η12)FTR12(L2) (2.52)

Π̃ISO = C̃R + (η12 − H̃12)FTR12 + (η21 − H̃21)FTR21 (2.53)

where η12 and η21 are the ISO pre-announced prices of FTR12 and FTR21 at beginning of

FTR market, i.e, at time t = 0. To make the case interesting, assume H ′
12 > η12 and H ′′

21 > η21,

that is, ISO sets the FTR price below its positive payoff so that generators and LSEs know

that if they buy FTRs they are not losing money for sure. To see this, suppose H ′
12 < η12

and take G1 for example. If G1 is in state 1, FTR’s total payoff is (H̃12 − η12)FTR12(G1) =

(H ′
12 − η12)FTR12(G1) < 0; if G1 is in state 2, FTR’s total payoff is (H̃12 − η12)FTR12(G1) =

(H ′′
12 − η12)FTR12(G1) = [(LMP ′′

2 − LMP ′′
1 ) − η12]FTR12(G1) < 0. Since there is no private

information, G1 knows for sure that he will lose money if he purchases FTR12(G1). Similar

argument applies to H ′′
21 > η21. FTR12 and FTR21 are the maximum amounts of FTR12 and

FTR21 that are available to sell.

Recall in the benchmark model, the main problem is for ISO to maximize the TNB subject

to a set of constraints in the day-ahead spot market where generators and LSEs have no control
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at all. In this model, however, the main problem is for generators and LSEs in the FTR forward

market to choose their optimal numbers of FTR contracts to hedge against the profit risks in

the day-ahead spot market in order to maximize their expected utility of profit19. The total

number of FTRs must satisfy ISO’s revenue adequacy constraint (RAC), which in turn will

ensure ISO passes the simultaneous feasibility test (SFT) (see Hogan (2002)).

Finally, to illustrate the point that FTRs really serve as hedging instruments in the sense

that FTRs can shrink the total profit spread of agents in two states and thus risk averse agents

are willing to pay some amount of premium to buy FTRs, let’s look at the case for G1.

With probability prob, G1’s total profit becomes Π′
G1 such that

Π′
G1 = π′G1 + (H ′

12 − η12)FTR12(G1)

= LMP ′
1Q

′
G1 − TCG1(Q′

G1) + (LMP ′
2 − LMP ′

1 − η12)FTR12(G1)

We see that with probability prob, G1 is in state 1 where LMP ′
1 is less than LMP ′

2 which

makes FTR12 bring positive profit to G1, but G1 was receiving the low LMP ′
1 (relative to

LMP ′
2), which directly decreases its production profit π′G1. Thus in this case, the FTR com-

pensates G1 for being in the unfavorable state by paying G1 a positive amount of profit.

On the other hand, with probability 1 - prob, G1’s total profit becomes Π′′
G1 such that

Π′′
G1 = π′′G1 + (H ′′

12 − η12)FTR12(G1)

= LMP ′′
1 Q′′

G1 − TCG1(Q′′
G1) + (LMP ′′

2 − LMP ′′
1 − η12)FTR12(G1)

We see that with probability 1 - prob, G1 is in state 2 where LMP ′′
2 is less than LMP ′′

1

which makes FTR12 bring negative profit to G1, but G1 was receiving the high LMP ′′
1 (relative

to LMP ′′
2 ), which directly increases its production profit π′′G1. Thus in this case, the FTR

penalizes G1 for being in its favorable state by taking away part of G1’s production profit.

So whether in state 1 or state 2, FTR12’s profit stream will always be in the opposite

direction of G1’s production profit to fulfill its hedging purpose. Similar argument applies to
19After generators and LSEs make their FTR purchasing decision in the forward market, they wait until the

states get revealed. At that time they will be in the day-ahead spot market and everything follows the results
derived from benchmark model.
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G2, LSE1 and LSE2. Therefore, FTRs are indeed hedging instruments for generators and

LSEs to reduce their systematic profit risks.

2.5.3 FTR Solutions

Assume all generators and LSEs possess logarithmic utilities (i.e.,u(π) = log(π)) and max-

imize their expected utility of total profit 20 by choosing the optimal FTR contracts, i.e.,

optimal hedge positions subject to the ISO’s revenue adequacy constraint (RAC). Then G1,

G2, LSE1 and LSE2’s problem can be expressed as follows:

G1 : Max E[U(Π̃G1)] = prob log(Π′
G1) + (1− prob) log(Π′′

G1) w.r.t. FTR12(G1) (2.54)

G2 : Max E[U(Π̃G2)] = prob log(Π′
G2) + (1− prob) log(Π′′

G2) w.r.t. FTR21(G2) (2.55)

LSE1 : Max E[U(Π̃L1)] = prob log(Π′
L1) + (1− prob) log(Π′′

L1) w.r.t. FTR21(L1) (2.56)

LSE2 : Max E[U(Π̃L2)] = prob log(Π′
L2) + (1− prob) log(Π′′

L2) w.r.t. FTR12(L2) (2.57)

subject to:

FTR12(G1) + FTR12(L2) ≤ FTR12

FTR21(G2) + FTR21(L1) ≤ FTR21

E(Π̃ISO) = E(C̃R) + (η12 − E(H̃12))FTR12 + (η21 − E(H̃21))FTR21 ≥ 0 (RAC)

Solving the first order conditions (FOCs), we obtain the following FTR optimal hedge

solutions (OHSs):

(OHS1) FTR∗
12(G1) =

prob(H ′
12 − η12)π′′G1 + (1− prob)(H ′′

12 − η12)π′G1

(H ′
12 − η12)(η12 −H ′′

12)
(2.58)

(OHS2) FTR∗
21(G2) =

prob(H ′
21 − η21)π′′G2 + (1− prob)(H ′′

21 − η21)π′G2

(H ′′
21 − η21)(η21 −H ′

21)
(2.59)

(OHS3) FTR∗
21(L1) =

prob(H ′
21 − η21)π′′L1 + (1− prob)(H ′′

21 − η21)π′L1

(H ′′
21 − η21)(η21 −H ′

21)
(2.60)

(OHS4) FTR∗
12(L2) =

prob(H ′
12 − η12)π′′L2 + (1− prob)(H ′′

12 − η12)π′L2

(H ′
12 − η12)(η12 −H ′′

12)
(2.61)

First we derive the following important proposition:
20Since the underlying parameters are not normally distributed, the expected utility is not linear in expected

profit and the variance of profit. Thus the usual mean-variance analysis does not work well here.
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Proposition 5 In a two-node electric network model facing uncertain parameter shocks, all

risk averse agents, i.e., generators and LSEs (assuming log utilities), will hold a positive

amount of FTRs if and only if the shock probability satisfies the following regularity condi-

tion (RC):

max{probG1, probL2} < prob < min{probG2, probL1} (RC) (2.62)

where

probG1 =
(η12 −H ′′

12)π
′
G1

(H ′
12 − η12)π′′G1 + (η12 −H ′′

12)π
′
G1

probG2 =
(η21 −H ′′

21)π
′
G2

(H ′
21 − η21)π′′G2 + (η21 −H ′′

21)π
′
G2

probL1 =
(η21 −H ′′

21)π
′
L1

(H ′
21 − η21)π′′L1 + (η21 −H ′′

21)π
′
L1

probL2 =
(η12 −H ′′

12)π
′
L2

(H ′
12 − η12)π′′L2 + (η12 −H ′′

12)π
′
L2

Proof:

Recall that π̃Gk > 0 and π̃Lk > 0 implies π′Gk > 0, π′′Gk > 0, π′Lk > 0 and π′′Lk > 0, for k = 1, 2.

Then from (OHS1)—(OHS4) we have the following:

FTR∗
12(G1) =

prob(H ′
12 − η12)π′′G1 + (1− prob)(H ′′

12 − η12)π′G1

(H ′
12 − η12)(η12 −H ′′

12)
> 0

⇐⇒ prob(H ′
12 − η12)π′′G1 + (1− prob)(H ′′

12 − η12)π′G1 > 0 (∵ H ′
12 − η12 > 0,H ′′

12 − η12 < 0)

⇐⇒ prob >
(η12 −H ′′

12)π
′
G1

(H ′
12 − η12)π′′G1 + (η12 −H ′′

12)π
′
G1

∈ (0, 1) (∵ π′G1 > 0, π′′G1 > 0)

= probG1

FTR∗
21(G2) =

prob(H ′
21 − η21)π′′G2 + (1− prob)(H ′′

21 − η21)π′G2

(H ′′
21 − η21)(η21 −H ′

21)
> 0

⇐⇒ prob(H ′
21 − η21)π′′G2 + (1− prob)(H ′′

21 − η21)π′G2 > 0 (∵ H ′
21 − η21 < 0,H ′′

21 − η21 > 0)

⇐⇒ prob <
(η21 −H ′′

21)π
′
G2

(H ′
21 − η21)π′′G2 + (η21 −H ′′

21)π
′
G2

∈ (0, 1) (∵ π′G2 > 0, π′′G2 > 0)

= probG2
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FTR∗
21(L1) =

prob(H ′
21 − η21)π′′L1 + (1− prob)(H ′′

21 − η21)π′L1

(H ′′
21 − η21)(η21 −H ′

21)
> 0

⇐⇒ prob(H ′
21 − η21)π′′L1 + (1− prob)(H ′′

21 − η21)π′L1 > 0 (∵ H ′
21 − η21 < 0,H ′′

21 − η21 > 0)

⇐⇒ prob <
(η21 −H ′′

21)π
′
L1

(H ′
21 − η21)π′′L1 + (η21 −H ′′

21)π
′
L1

∈ (0, 1) (∵ π′L1 > 0, π′′L1 > 0)

= probL1

FTR∗
12(L2) =

prob(H ′
12 − η12)π′′L2 + (1− prob)(H ′′

12 − η12)π′L2

(H ′
12 − η12)(η12 −H ′′

12)
> 0

⇐⇒ prob(H ′
12 − η12)π′′L2 + (1− prob)(H ′′

12 − η12)π′L2 > 0 (∵ H ′
12 − η12 > 0,H ′′

12 − η12 < 0)

⇐⇒ prob >
(η12 −H ′′

12)π
′
L2

(H ′
12 − η12)π′′L2 + (η12 −H ′′

12)π
′
L2

∈ (0, 1) (∵ π′L2 > 0, π′′L2 > 0)

= probL2

Therefore, to ensure that FTR∗
12(G1) > 0, FTR∗

21(G2) > 0, FTR∗
21(L1) > 0, and FTR∗

12(L2) >

0, we need to have prob > probG1, prob > probL2, prob < probG2, and prob < probL1, which is

equivalent to max{probG1, probL2} < prob < min{probG2, probL1}. Q.E.D.

Furthermore, when we investigate how the optimal FTR hedge positions change with the

change of shock probability prob, we have the following proposition:

Proposition 6 In a two-node electric network model facing uncertain parameter shocks, the

optimal FTR12 increases with increasing prob while the optimal FTR21 decreases with in-

creasing prob, provided that prob satisfies the regularity condition. The comparative statics are

shown as follows:

∂FTR12(G1)

∂prob
> 0,

∂FTR12(L2)

∂prob
> 0,

∂FTR21(G2)

∂prob
< 0, and

∂FTR21(L1)

∂prob
< 0. (2.63)

The economic intuition behind this proposition is straightforward. Recall that prob is the

probability that the transmission line is congested from node 1 to node 2. Increasing prob thus

implies that the transmission line is more likely to get congested from node 1 to node 2. Since

congestion from node 1 to node 2 makes FTR12 bring positive profit to its owner but makes

FTR21 bring negative profit to its owner, the risk-averse agents who own FTR12 (G1 and L2)

will tend to buy more of FTR12 while the agents who own FTR21 (G2 and L1) will tend to

buy less of FTR21. The formal proof is provided below.
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Proof:

Recall that H ′
12 − η12 > 0, H ′′

12 − η12 < 0 and H ′
21 − η21 < 0 H ′′

21 − η21 > 0.

∂FTR12(G1)

∂prob
= [(H ′

12 − η12)π′′G1 + (η12 −H ′′
12)π

′
G1]/[(H ′

12 − η12)(η12 −H ′′
12)] > 0;

∂FTR12(L2)

∂prob
= [(H ′

12 − η12)π′′L2 + (η12 −H ′′
12)π

′
L2]/[(H ′

12 − η12)(η12 −H ′′
12)] > 0;

∂FTR21(G2)

∂prob
= [(H ′

21 − η21)π′′G2 + (η21 −H ′′
21)π

′
G2]/[(H ′

21 − η21)(η21 −H ′′
21)] < 0;

∂FTR21(L1)

∂prob
= [(H ′

21 − η21)π′′L1 + (η21 −H ′′
21)π

′
L1]/[(H ′

21 − η21)(η21 −H ′′
21)] < 0; Q.E.D.

Now we are ready establish the most important proposition in this paper, that is, to show

the existence of FTRs actually increases the social welfare in this two-node electric network

model under stochastic parameter shocks.

Proposition 7 In a two-node electric network model facing uncertain parameter shocks, the

acquisition of optimal FTRs by the risk averse generators and LSEs increases and in general

strictly increases the social welfare compared with the case where there is no FTRs. Social

welfare function W can be measured by generators and LSEs’ total expected utilities. Denote

the welfare under optimal FTRs as WF and the welfare without FTRs as W0. Then,

WF ≥ W0 (2.64)

The economic intuition behind this proposition is that since there is uncertainty in this model,

generators and LSEs are not sure about their future profits: they may happen to obtain the

high profits in one state or end up receiving the low profits in the other state. However they

know ISO issues a financial instrument, FTR, which can be used to hedge against their risky

profit by reducing the profit spread between the two states. The risk averse generators and

LSEs are thus willing to pay some premium to buy FTRs in order to maximize their expected

utilities of future profits. If all generators and LSEs maximize their expected utilities by

purchasing FTRs, then we can say FTRs increase the social welfare which is measured by total

expected utilities. The formal proof of the proposition is provided in Appendix 5.

This proposition has important economic implications. First, it shows that in this simple

two-node electric network model, once we introduce uncertainty (even in a very simple form),
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the acquisition of FTRs by risk averse agents can increase total social welfare. Moreover, as

the proof shows, this result is strong and robust in the sense that regardless whether agents

take long or short positions, the social welfare with FTRs is higher and in general is strictly

higher than that without FTRs. This result thus refutes the far more negative views of FTRs

by other economists such as Joskow and Tirole (2000), and provides an economic explanation

to the fact that FTRs are widely used in the major U.S. wholesale power markets.

Finally, in an attempt to endogenize the prices of FTRs, η12 and η21, consider an ISO’s

problem. Since all information is public, that is, ISO knows that generators and LSEs will

purchase FTRs to hedge against their risky profit in the energy spot market. Then ISO can

solve generators and LSEs’ problems to get the optimal FTR hedge solutions and substitute

them into ISO’s revenue adequacy constraint (RAC):

E(Π̃ISO) = E(C̃R) + (η12 − E(H̃12))FTR12 + (η21 − E(H̃21))FTR21 ≥ 0

where

FTR12 = FTR∗
12(G1) + FTR∗

12(L2)

FTR21 = FTR∗
21(G2) + FTR∗

21(L1)

E(C̃R) = prob CR′+(1−prob)CR′′ = prob(LMP ′
2−LMP ′

1)T +(1−prob)(LMP ′′
1 −LMP ′′

2 )T

E(H̃12) = prob H ′
12 + (1− prob)H ′′

12 = prob(LMP ′
2 − LMP ′

1) + (1− prob)(LMP ′′
2 − LMP ′′

1 )

E(H̃21) = prob H ′
21 + (1− prob)H ′′

21 = prob(LMP ′
1 − LMP ′

2) + (1− prob)(LMP ′′
1 − LMP ′′

2 )

Now ISO has several options to proceed. (a) The simplest option is to adjust η12 and η21

so that the RAC becomes binding. Then the relationship between η12 and η21 can be obtained

as an implicit function denoted as g1() such that g1(η12, η21) = 0. (b) The more complicated

option ISO can adopt is to adjust η12 and η21 so that it can extract a maximum amount of

residual congestion rent (RCR). Then ISO invests this RCR to expand the transmission line,

i.e., increase thermal limit T , which will reduce the uncertain profit spread, enhance efficiency,

and increase social welfare. With this option, ISO can get another set of relationship between

η12 and η21 in an implicit function denoted as g1() such that g1(η12, η21) = 0.
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To possibly obtain a unique solution for η12 and η21, we need to turn around and look

at the problem from generator and LSE points of view. Since all generators and LSEs are

assumed to be risk averse, they must be willing to pay certain amount of premiums to reduce

the profit risks. Then in equilibrium the risk premiums are equivalent to the price of FTRs

multiplied by the corresponding FTR contracts, that is, we have,

U [E(π̃G1 + H̃12FTR12(G1))− η12FTR12(G1)] = E[U(π̃G1 + H̃12FTR12(G1))] (2.65)

U [E(π̃G2 + H̃21FTR21(G2))− η21FTR21(G2)] = E[U(π̃G2 + H̃21FTR21(G2))] (2.66)

U [E(π̃L1 + H̃21FTR21(L1))− η21FTR21(L1)] = E[U(π̃L1 + H̃21FTR21(L1))] (2.67)

U [E(π̃L2 + H̃12FTR12(L2))− η12FTR12(L2)] = E[U(π̃L2 + H̃12FTR12(L2))] (2.68)

With the logarithmic utilities, in principle we can solve for FTR∗∗
12(G1), FTR∗∗

21(G2), FTR∗∗
21(L1),

and FTR∗∗
12(L2) such that:

E(π̃G1) + (E(H̃12)− η12)FTR∗∗
12(G1) = (π′G1 + H ′

12FTR∗∗
12(G1))

prob(π′′G1 + H ′′
12FTR∗∗

12(G1))
1−prob

E(π̃G2) + (E(H̃21)− η21)FTR∗∗
21(G2) = (π′G2 + H ′

21FTR∗∗
21(G2))

prob(π′′G2 + H ′′
21FTR∗∗

21(G2))
1−prob

E(π̃L1) + (E(H̃21)− η21)FTR∗∗
21(L1) = (π′L1 + H ′

21FTR∗∗
21(L1))

prob(π′′L1 + H ′′
21FTR∗∗

21(L1))
1−prob

E(π̃L2) + (E(H̃12)− η12)FTR∗∗
12(L2) = (π′L2 + H ′

12FTR∗∗
12(L2))

prob(π′′L2 + H ′′
12FTR∗∗

12(L2))
1−prob

where E(H̃12) and E(H̃21) are as defined as above and E(π̃)’s are defined as follows:

E(π̃G1) = prob π′G1 + (1− prob)π′′G1;

E(π̃G2) = prob π′G2 + (1− prob)π′′G2;

E(π̃L1) = prob π′L1 + (1− prob)π′′L1;

E(π̃L2) = prob π′L2 + (1− prob)π′′L2.

After substituting the FTR∗∗ solutions into the ISO’s RAC and let ISO adjust η12 and

η21. Regardless whether ISO chooses option(a) or option(b), we can, in principle, derive

another relationship between η12 and η21 in an implicit function denoted as g2() such that

g2(η12, η21) = 0.
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Hence by solving the system of equation for η12 and η21, g1(η12, η21) = 0;

g2(η12, η21) = 0.

in principle we can solve for the equilibrium FTR price vector η∗ = (η∗12, η
∗
21) such that g1(η∗12, η

∗
21) = 0;

g2(η∗12, η
∗
21) = 0.

2.6 Conclusions and Extensions

In this paper, we’ve studied the competitive behaviors of electricity generators and LSEs,

and analyzed welfare effects of financial transmission rights (FTRs) in a restructured U.S.

wholesale power market model. The analysis focuses on a two-node electric network model

where there is one generator and one LSE at each node with parameterized marginal cost and

demand functions, supervised by an independent system operator (ISO). In the first part of

the paper, a no-rights benchmark model is developed to solve for the optimal quantity of power

production and consumption (the ED solutions) and derive the locational marginal prices for

each node, which serve as the building blocks to solve for the optimal FTR hedge positions

in the second model. Then in the second model, we introduce a stochastic parameter shock

into the two-node electric network model, and show that in the absence of market power the

acquisition of optimal FTRs by the risk averse generators and LSEs increases and in general

strictly increases the social welfare compared with the case where there is no FTRs available.

This result refutes the somehow negative views of FTRs by other economists in the literature

and provides the economic explanations to the fact that FTRs are widely adopted as a financial

hedge instrument in the major U.S. wholesale power markets.

This study can be extended in several ways. First, we can extend the model to have an

arbitrary number of generators and LSEs at each node. Admittedly, this extension adds the

burden of calculations, but it does not change the essence of the solution. Mainly what we

should be concerned about is to obtain an aggregate marginal cost (supply) function ASk(Gk)

and an aggregate demand function ADk(Lk) for each node k = 1, 2. Then proceed to solve
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the model as if there were one “representative” generator and one “representative” LSE. After

the aggregate solution is acquired, the solution quantities can be referred back through LMPs

to get the individual dispatched quantities. Although the process of solving the problem is

more tedious, the essence of the solution algorithm in this paper remains the same. We expect

that including multiple generators and LSEs at each node will not have dramatic effects on

the solution outcomes.

Second, we can extend our two-node electric network model to three nodes or more. Then

we will be introducing an important feature of real world electric network, i.e., the “loop flow

effect”, which considerably increases the modeling complications. Basically, the “loop flow

effect” is associated with the fact that electrons follow the path of least resistance. In an

electric network with a transmission grid consisting of multiple connection lines, the patterns

of electric flows follow the Kirchhoff’s laws in physics. For example, in a three-node network,

if there is a power injection Q at one node, say node 1 and an equal amount of withdrawal at

another node, say node 2, then depending on the reactance of line 1-2, line 1-3 and line 2-3, a

proportion amount of power, say αQ flows from node 1 to node 2 while the rest (1−α)Q flows

from node 1 to node 3 then flows from node 3 to node 2. For instance, if the line reactance is

the same for all three lines, then α = 2/3. In this case, we need to add one more variable, the

phase angle (φ), in order to control the power flows between transmission lines 21. Although

there is significant amount of work involved when we model the three-node case, the result is

expected to be closer to reality than the two-node case.

Third, in our two-node model, we assume generators and LSEs always submit their true

marginal cost functions and true demand functions to ISO. So we always obtain the competitive

solution which is also Pareto optimal22. But if we relax this assumption such that generators

and LSEs can strategically submit their marginal cost and demand functions in the attempt to

gain individual advantages through strategic behaviors, we will generally not be able to obtain

the competitive solutions.
21Technically, we need to model the 3-node case using a Direct Current (DC) power flow formulation.
22In the 3-node case, it becomes unclear that the outcome will still be Pareto optimal because of externality

brought by “loop flow” effect.
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Fourth, we could extend the static two-node model into a dynamic model with multiple

periods, where in each period, generators and LSEs submit their strategic bids and offers in a

double auction framework in both FTR and day-ahead power markets. Generators and LSEs

could be endowed with an initial wealth. If they don’t make enough profits within a certain

period of time, then they will be out of market. Moreover, these generators and LSEs can

“learn” what is the best strategies for them over time. The learning methods may include

reinforcement learning and anticipatory learning, etc.

With these complicated extensions, it seems almost impossible to proceed with the ana-

lytical tools used in this paper. A natural candidate that may fit very well for this purpose

is the agent-based computational approach. For a comprehensive introduction of Agent-based

Computational Economics (ACE), see the ACE survey by Tesfatsion (2003).
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2.8 Appendix

2.8.1 Appendix 1

The non-thermal-constraint ED solution in Step 1 is derived as follows:

In step 1, when the thermal limit T never binds, the ED problem is to maximize the

“total net benefit”(TNB) subject to the balancing and non-negativity constraints. This is

just a standard optimization problem with one equality constraint (the balancing constraint)

and four inequality constraints (the non-negativity constraints for QG1, QG2, QL1 and QL2).

Using µ as the multiplier for the equality constraint and λ’s as the multipliers for inequality

constraints, and formulate the Lagrangian equation:

L = (bD
1 QL1 −

1
2
aD

1 Q2
L1)− (bS

1 QG1 +
1
2
aS

1 Q2
G1) + (bD

2 QL2 −
1
2
aD

2 Q2
L2)− (bS

2 QG2 +
1
2
aS

2 Q2
G2)

+µ(QG1 + QG2 −QL1 −QL2) + λG1QG1 + λG2QG2 + λL1QL1 + λL2QL2
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Derive the first order conditions (FOCs):

∂L

∂QL1
= bD

1 − aD
1 QL1 − µ + λL1 = 0

∂L

∂QG1
= −bS

1 − aS
1 QG1 + µ + λG1 = 0

∂L

∂QL2
= bD

2 − aD
2 QL2 − µ + λL2 = 0

∂L

∂QG2
= −bS

2 − aS
2 QG2 + µ + λG2 = 0

∂L

∂µ
= QG1 + QG2 −QL1 −QL2 = 0

QG1 ≥ 0, λG1 ≥ 0, λG1QG1 = 0

QG2 ≥ 0, λG2 ≥ 0, λG2QG2 = 0

QL1 ≥ 0, λL1 ≥ 0, λL1QL1 = 0

QL2 ≥ 0, λL2 ≥ 0, λL2QL2 = 0

For simplicity, only consider the case where all dispatched quantities are positive, i.e., all

non-negativity constraints are not binding (λG1 = λG2 = λL1 = λL2 = 0)23. Thus from FOCs

we have:



aS
1 QG1 + aD

1 QL1 = bD
1 − bS

1 ;

aS
1 QG1 + aD

2 QL2 = bD
2 − bS

1 ;

aS
2 QG2 + aD

2 QL2 = bD
2 − bS

2 ;

QG1 + QG2 = QL1 + QL2 ;

µ = bS
1 + aS

1 QG1 .

Notice the last equation shows that the Lagrangian multiplier associated with balancing

constraint is equal to the marginal cost, which by the nature of this ED problem is also the

LMP. Solving five unknown variables with five equations, we obtain the Step 1 non-thermal-

constraint ED solution:
23We find a total of nine other possible solution cases, i.e., (1) QG1 = 0; (2) QG2 = 0; (3) QL1 = 0;

(4) QL2 = 0; (5) QG1 = QL1 = 0; (6) QG1 = QL2 = 0; (7) QG2 = QL1 = 0; (8) QG2 = QL2 = 0; (9)
QG1 = QG2 = QL1 = QL2 = 0.
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Q̂G1 =
aD

2 aS
2 (bD

1 − bS
1 ) + aD

1 aS
2 (bD

2 − bS
2 ) + aD

1 (aD
2 + aS

2 )(bS
2 − bS

1 )
aD

1 aS
1 (aD

2 + aS
2 ) + aD

2 aS
2 (aD

1 + aS
1 )

Q̂G2 =
aD

1 aS
1 (bD

2 − bS
2 ) + aS

1 aD
2 (bD

1 − bS
1 )− aD

2 (aD
1 + aS

1 )(bS
2 − bS

1 )
aD

1 aS
1 (aD

2 + aS
2 ) + aD

2 aS
2 (aD

1 + aS
1 )

Q̂L1 =
(aD

2 aS
2 + aS

1 aD
2 + aS

1 aS
2 )(bD

1 − bS
1 )− aS

1 aS
2 (bD

2 − bS
2 )− aS

1 (aD
2 + aS

2 )(bS
2 − bS

1 )
aD

1 aS
1 (aD

2 + aS
2 ) + aD

2 aS
2 (aD

1 + aS
1 )

Q̂L2 =
(aD

1 aS
1 + aD

1 aS
2 + aS

1 aS
2 )(bD

2 − bS
2 )− aS

1 aS
2 (bD

1 − bS
1 ) + aS

2 (aD
1 + aS

1 )(bS
2 − bS

1 )
aD

1 aS
1 (aD

2 + aS
2 ) + aD

2 aS
2 (aD

1 + aS
1 )

LMP1 = LMP2 = µ̂ = bS
1 + aS

1 Q̂G1 =
aD

2 aS
2 (aD

1 bS
1 + aS

1 bD
1 ) + aD

1 aS
1 (aD

2 bS
2 + aS

2 bD
2 )

aD
1 aS

1 (aD
2 + aS

2 ) + aD
2 aS

2 (aD
1 + aS

1 )

which can be expressed as:

Q̂G1 = (G1 + B1)/A

Q̂G2 = (G2 + B2)/A

Q̂L1 = (L1 + C1)/A

Q̂L2 = (L2 + C2)/A

LMP1 = LMP2 = µ̂ = bS
1 + aS

1 Q̂G1

where

G1 = D2B1 + aD
1 aS

2 B2, B1 = aD
1 A2C1, L1 = (D2 + aS

1 A2)B1 − aS
1 aS

2 B2, C1 = aS
1 A2C2;

G2 = D1B2 + aS
1 aD

2 B1, B2 = aD
2 A1C2, L2 = (D1 + aS

2 A1)B2 − aS
1 aS

2 B1, C2 = aS
2 A1C1;

A = D1A2 + D2A1;

A1 = aD
1 + aS

1 , B1 = bD
1 − bS

1 , C1 = bS
2 − bS

1 , D1 = aD
1 aS

1 ;

A2 = aD
2 + aS

2 , B2 = bD
2 − bS

2 , C2 = bS
1 − bS

2 , D2 = aD
2 aS

2 .

2.8.2 Appendix 2

The binding-thermal-constraint ED solution in Step 2 is derived as follows:

(a) Based on Step 1 non-thermal-constraint ED solution, if we know T is binding from

1 to 2, i.e., Q̂G1 − Q̂L1 > T or Q̂L2 − Q̂G2 > T . We can set either QG1 − QL1 = T or

QL2 −QG2 = T . But one of them is redundant due to the fact that the balancing constraint
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(QG1 + QG2 = QL1 + QL2) always holds in this two-node electric network model. So without

loss of generality, let QG1 −QL1 = T .

This is a standard optimization problem subject to two equality constraints (balancing

and thermal constraint) and four inequality constraints (the non-negativity constraints for

QG1, QG2, QL1 and QL2). Using µ’s as the multipliers for equality constraints and λ’s as the

multipliers for inequality constraints, and formulate the Lagrangian equation:

L = (bD
1 QL1 −

1
2
aD

1 Q2
L1)− (bS

1 QG1 +
1
2
aS

1 Q2
G1) + (bD

2 QL2 −
1
2
aD

2 Q2
L2)− (bS

2 QG2 +
1
2
aS

2 Q2
G2)

+µB(QG1 + QG2−QL1−QL2) + µT (T −QG1 + QL1) + λG1QG1 + λG2QG2 + λL1QL1 + λL2QL2

Recall all the parameters are positive, i.e., T > 0, aD
j > 0, bD

j > 0,, and aS
i > 0, bS

i > 0 for

i, j = 1, 2. Derive the FOCs:

∂L

∂QL1
= bD

1 − aD
1 QL1 − µB + µT + λL1 = 0

∂L

∂QG1
= −bS

1 − aS
1 QG1 + µB − µT + λG1 = 0

∂L

∂QL2
= bD

2 − aD
2 QL2 − µB + λL2 = 0

∂L

∂QG2
= −bS

2 − aS
2 QG2 + µB + λG2 = 0

∂L

∂µB
= QG1 + QG2 −QL1 −QL2 = 0

∂L

∂µT
= T −QG1 + QL1 = 0

QG1 ≥ 0, λG1 ≥ 0, λG1QG1 = 0

QG2 ≥ 0, λG2 ≥ 0, λG2QG2 = 0

QL1 ≥ 0, λL1 ≥ 0, λL1QL1 = 0

QL2 ≥ 0, λL2 ≥ 0, λL2QL2 = 0

Rearranging the FOCs w.r.t QL1 and QG1, the FOCs w.r.t QL2 and QG2, and the FOCs

w.r.t µB and µT , we have:
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

aS
1 QG1 + aD

1 QL1 = bD
1 − bS

1 + λL1 + λG1 ;

aS
2 QG2 + aD

2 QL2 = bD
2 − bS

2 + λL2 + λG2 ;

QG1 −QL1 = T ;

QL2 −QG2 = T .

Solving four unknown variables with four equations , we have:

QG1 =
bD
1 − bS

1 + aD
1 T + λL1 + λG1

aD
1 + aS

1

QG2 =
bD
2 − bS

2 − aD
2 T + λL2 + λG2

aD
2 + aS

2

QL1 =
bD
1 − bS

1 − aS
1 T + λL1 + λG1

aD
1 + aS

1

QL2 =
bD
2 − bS

2 + aS
2 T + λL2 + λG2

aD
2 + aS

2

Now to tackle the corner solutions, first let the solutions be all positive, i.e., QG1 > 0, QG2 >

0, QL1 > 0, QL2 > 0, so λG1 = λG2 = λL1 = λL2 = 0. We then can get the following:

QG1 =
bD
1 − bS

1 + aD
1 T

aD
1 + aS

1

QG2 =
bD
2 − bS

2 − aD
2 T

aD
2 + aS

2

QL1 =
bD
1 − bS

1 − aS
1 T

aD
1 + aS

1

QL2 =
bD
2 − bS

2 + aS
2 T

aD
2 + aS

2

For the solutions indeed to be all positive, the parameters (bD
j , aD

j , bS
i , aS

i , T , for i, j = 1, 2)

must satisfy the following conditions (in other words, any violations to the following conditions

will lead to corner solutions):

(∗1) bD
1 − bS

1 + aD
1 T > 0 or QG1 > 0

(∗2) bD
2 − bS

2 − aD
2 T > 0 or QG2 > 0

(∗3) bD
1 − bS

1 − aS
1 T > 0 or QL1 > 0
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(∗4) bD
2 − bS

2 + aS
2 T > 0 or QL2 > 0

Close examination on the above conditions indicates that Condition (*1) and (*4) will not

be violated because in this case the thermal constraint is binding from node 1 to node 2, i.e.,

node 1 as the net export node (NEN) and node 2 as the net import node (NIN). Recall in the

simplifying assumptions we assume that there is only one generator and one LSE at each node.

So node 1 as the NEN and node 2 as the NIN would imply that G1 has to supply a positive

amount of power over the transmission line and LSE2 has to demand a positive amount of

power from G1 in this two-node electric network model. Hence the total power supply by G1,

QG1, and the total power demand by LSE2, QL2, must be greater than zero, which proves that

(*1) and (*4) will always hold in this case. Then the Complementary Slackness Conditions

(CSCs) for QG1 and QL2 will ensure λG1 = 0 and λL2 = 0.

In summary, the general solution (GS) is:

(GS1) QG1 =
bD
1 − bS

1 + aD
1 T + λL1

aD
1 + aS

1

(GS2) QG2 =
bD
2 − bS

2 − aD
2 T + λG2

aD
2 + aS

2

(GS3) QL1 =
bD
1 − bS

1 − aS
1 T + λL1

aD
1 + aS

1

(GS4) QL2 =
bD
2 − bS

2 + aS
2 T + λG2

aD
2 + aS

2

Since Condition (*1) and (*4) will always hold, we only need to examine Condition (*2)

and (*3) to get the ED solutions. There are four cases to consider, i.e., [i] both (*2) and (*3)

hold; [ii] (*2) holds while (*3) is violated; [iii] (*3) holds while (*2) is violated; [iv] both (*2)

and (*3) are violated.

Case I: Both (*2) and (*3) hold (interior solution)

When (*2) and (*3) hold, i.e., QG2 > 0 and QL1 > 0, the CSCs for QG2 and QL1 will give us:

λG2 = 0 and λL1 = 0.

Then the Step 2 ED solution vector is simply s∗ = (Q∗
G1, Q

∗
G2, Q

∗
L1, Q

∗
L2), where

Q∗
G1 =

bD
1 − bS

1 + aD
1 T

aD
1 + aS

1
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Q∗
G2 =

bD
2 − bS

2 − aD
2 T

aD
2 + aS

2

Q∗
L1 =

bD
1 − bS

1 − aS
1 T

aD
1 + aS

1

Q∗
L2 =

bD
2 − bS

2 + aS
2 T

aD
2 + aS

2

LMP1 = bS
1 + aS

1 Q∗
G1 =

aD
1 bS

1 + aS
1 bD

1 + aD
1 aS

1 T

aD
1 + aS

1

LMP2 = bS
2 + aS

2 Q∗
G2 =

aD
2 bS

2 + aS
2 bD

2 − aD
2 aS

2 T

aD
2 + aS

2

Case II: (*2) holds while (*3) is violated

When (*2) holds, i.e., QG2 > 0, then the CSC for QG2 will give us λG2 = 0. Then from the

general solution (GS2) and (GS4), we know that Q∗
G2 and Q∗

L2 are the same as in Case I.

When (*3) is violated, i.e., QL1 < 0, then by the non-negativity constraint for QL1 we have

Q∗
L1 = 0. From (GS3) we have Q∗

L1 = bD
1 −bS

1−aS
1 T+λ∗L1

aD
1 +aS

1
= 0. Solving for λ∗L1 = bS

1 − bD
1 + aS

1 T

and substituting it into (GS1), we have Q∗
G1 = T

So the Step 2 ED solution vector is s∗ = (Q∗
G1, Q

∗
G2, Q

∗
L1, Q

∗
L2), where

Q∗
G1 = T

Q∗
G2 = bD

2 −bS
2−aD

2 T

aD
2 +aS

2

Q∗
L1 = 0

Q∗
L2 = bD

2 −bS
2 +aS

2 T

aD
2 +aS

2

LMP1 = bS
1 + aS

1 Q∗
G1 = bS

1 + aS
1 T

LMP2 = bS
2 + aS

2 Q∗
G2 = aD

2 bS
2 +aS

2 bD
2 −aD

2 aS
2 T

aD
2 +aS

2

Case III: (*3) holds while (*2) is violated

When (*3) holds, i.e., QL1 > 0, then the CSC for QL1 will give us λL1 = 0. Then from the

general solution (GS1) and (GS3), we know that Q∗
G1 and Q∗

L1 are the same as in Case I.

When (*2) is violated, i.e., QG2 < 0, then by the non-negativity constraint for QG2 we have

Q∗
G2 = 0. From (GS2) we have Q∗

G2 = bD
2 −bS

2−aD
2 T+λ∗G2

aD
2 +aS

2
= 0. Solving for λ∗G2 = bS

2 − bD
2 + aD

2 T

and substituting it into (GS4), we have Q∗
L2 = T .
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So the Step 2 ED solution vector is s∗ = (Q∗
G1, Q

∗
G2, Q

∗
L1, Q

∗
L2), where

Q∗
G1 = bD

1 −bS
1 +aD

1 T

aD
1 +aS

1

Q∗
G2 = 0

Q∗
L1 = bD

1 −bS
1−aS

1 T

aD
1 +aS

1

Q∗
L2 = T

LMP1 = bS
1 + aS

1 Q∗
G1 = aD

1 bS
1 +aS

1 bD
1 +aD

1 aS
1 T

aD
1 +aS

1

LMP2 = bD
2 − aD

2 Q∗
L2 = bD

2 − aD
2 T

Case IV: Both (*2) and (*3) are violated

When (*2) is violated, i.e., QG2 < 0, then by the non-negativity constraint for QG2 we have

Q∗
G2 = 0. QL2 is the same as in Case III, i.e., Q∗

L2 = T . When (*3) is violated, i.e., QL1 < 0,

then by the non-negativity constraint for QL1 we have Q∗
L1 = 0. QG1 is the same as in Case

II, i.e., Q∗
G1 = T

So the Step 2 ED solution vector is s∗ = (Q∗
G1, Q

∗
G2, Q

∗
L1, Q

∗
L2), where

Q∗
G1 = T

Q∗
G2 = 0

Q∗
L1 = 0

Q∗
L2 = T

LMP1 = bS
1 + aS

1 Q∗
G1 = bS

1 + aS
1 T

LMP2 = bD
2 − aD

2 Q∗
L2 = bD

2 − aD
2 T

So the Step 2 ED solutions can be summarized as follows:

Step 2 ED Solution (T is binding from 1 to 2)

Case I Case II Case III Case IV

Q∗
G1 = B1+aD

1 T
A1

Q∗
G1 = T Q∗

G1 = B1+aD
1 T

A1
Q∗

G1 = T

Q∗
G2 = B2−aD

2 T
A2

Q∗
G2 = B2−aD

2 T
A2

Q∗
G2 = 0 Q∗

G2 = 0

Q∗
L1 = B1−aS

1 T
A1

Q∗
L1 = 0 Q∗

L1 = B1−aS
1 T

A1
Q∗

L1 = 0

Q∗
L2 = B2+aS

2 T
A2

Q∗
L2 = B2+aS

2 T
A2

Q∗
L2 = T Q∗

L2 = T

LMP1 = E1+D1T
A1

LMP1 = bS
1 + aS

1 T LMP1 = E1+D1T
A1

LMP1 = bS
1 + aS

1 T

LMP2 = E2−D2T
A2

LMP2 = E2−D2T
A2

LMP2 = bD
2 − aD

2 T LMP2 = bD
2 − aD

2 T



www.manaraa.com

60

where

A1 = aD
1 + aS

1 , B1 = bD
1 − bS

1 , D1 = aD
1 aS

1 , E1 = aD
1 bS

1 + aS
1 bD

1 ;

A2 = aD
2 + aS

2 , B2 = bD
2 − bS

2 , D2 = aD
2 aS

2 , E2 = aD
2 bS

2 + aS
2 bD

2 .

(b) If, on the other hand, we know T is binding from 2 to 1 based on Step 1 non-thermal-

constraint ED solution, i.e., Q̂G2−Q̂L2 > T or Q̂L1−Q̂G1 > T . We can set either QG2−QL2 = T

or QL1−QG1 = T . But one of them is redundant due to the fact that the balancing constraint

(QG1 + QG2 = QL1 + QL2) always holds in this two-node electric network model. So without

loss of generality, let QG2 −QL2 = T .

Using the same procedure as in (a), we can derive another set of Step 2 ED solutions:

Step 2 ED Solution (T is binding from 2 to 1)

Case I Case II Case III Case IV

Q∗
G1 = B1−aD

1 T
A1

Q∗
G1 = B1−aD

1 T
A1

Q∗
G1 = 0 Q∗

G1 = 0

Q∗
G2 = B2+aD

2 T
A2

Q∗
G2 = T Q∗

G2 = B2+aD
2 T

A2
Q∗

G2 = T

Q∗
L1 = B1+aS

1 T
A1

Q∗
L1 = B1+aS

1 T
A1

Q∗
L1 = T Q∗

L1 = T

Q∗
L2 = B2−aS

2 T
A2

Q∗
L2 = 0 Q∗

L2 = B2−aS
2 T

A2
Q∗

L2 = 0

LMP1 = E1−D1T
A1

LMP1 = E1−D1T
A1

LMP1 = bD
1 − aD

1 T LMP1 = bD
1 − aD

1 T

LMP2 = E2+D2T
A2

LMP2 = bS
2 + aS

2 T LMP2 = E2+D2T
A2

LMP2 = bS
2 + aS

2 T

2.8.3 Appendix 3

Proof of Proposition 1:

First we want to show LMP2 > LMP1 ⇔ Ω = (A1E2 − A2E1)/(D1A2 + D2A1) > T .

Recall in Step 2 ED solution, we know LMP1 = E1+D1T
A1

and LMP2 = E2−D2T
A2

. Then

LMP2 > LMP1 ⇔ E2 −D2T

A2
− E1 + D1T

A1
> 0

⇔ A1E2 −A2E1 − (D1A2 + D2A1)T
A1A2

> 0

⇔ A1E2 −A2E1

D1A2 + D2A1
> T (since A1, A2, D1, D2 > 0)
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Next, let B1 = bD
1 −bS

1 , B2 = bD
2 −bS

2 and C = bS
2−bS

1 and we want to show T is binding from 1 to 2 ⇔
A1E2−A2E1
D1A2+D2A1

> T . Recall in the Step 1 ED solution and Definition 1,

T is binding from 1 to 2 ⇔ Q̂G1 − Q̂L1 > T, where

Q̂G1 =
D2B1 + aD

1 aS
2 B2 + aD

1 A2C

D1A2 + D2A1

Q̂L1 =
(D2 + aS

1 aD
2 + aS

1 aS
2 )B1 − aS

1 aS
2 B2 − aS

1 A2C

D1A2 + D2A1

Q̂G1 − Q̂L1 > T ⇔ aS
2 B2A1 − aS

1 B1A2 + A1A2C1

D1A2 + D2A1
> T

⇔ aS
2 (bD

2 − bS
2 )A1 − aS

1 (bD
1 − bS

1 )A2 + A1A2(bS
2 − bS

1 )
D1A2 + D2A1

> T

⇔ A1(aS
2 (bD

2 − bS
2 ) + bS

2 (aD
2 + aS

2 ))−A2(aS
1 (bD

1 − bS
1 ) + bS

1 (aD
1 + aS

1 ))
D1A2 + D2A1

> T

⇔ A1(aS
2 bD

2 + aD
2 bS

2 )−A2(aS
1 bD

1 + aD
1 bS

1 )
D1A2 + D2A1

> T

⇔ A1E2 −A2E1

D1A2 + D2A1
> T

⇔ Ω > T

Since we showed T is binding from 1 to 2 ⇔ Ω > T and LMP2 > LMP1 ⇔ Ω > T , we’ve

proved (*1) in Proposition 1. Similar procedures can easily be applied to prove (*2) and (*3).

Q.E.D.

2.8.4 Appendix 4

Proof of Proposition 3:

(i) T is binding from node 1 to node 2

Recall in the benchmark model total net benefit (TNB) is defined as the total net surplus for

all generators and LSEs, that is,

TNB = (bD
1 QL1−

1
2
aD

1 Q2
L1)− (bS

1 QG1 +
1
2
aS

1 Q2
G1) + (bD

2 QL2−
1
2
aD

2 Q2
L2)− (bS

2 QG2 +
1
2
aS

2 Q2
G2)
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∂TNB

∂T
= (bD

1

∂QL1

∂T
− aD

1 QL1
∂QL1

∂T
)− (bS

1

∂QG1

∂T
+ aS

1 QG1
∂QG1

∂T
)

+ (bD
2

∂QL2

∂T
− aD

2 QL2
∂QL2

∂T
)− (bS

2

∂QG2

∂T
+ aS

2 QG2
∂QG2

∂T
)

= −aS
1 bD

1

A1
+

aD
1 aS

1 QL1

A1
− aD

1 bS
1

A1
− aD

1 aS
1 QG1

A1
+

aS
2 bD

2

A2
− aD

2 aS
2 QL2

A2
− aD

2 bS
2

A2
− aD

2 aS
2 QG2

A2

=
aS

2 bD
2 + aD

2 bS
2

A2
− aS

1 bD
1 + aD

1 bS
1

A1
− aD

1 aS
1 (QG1 −QL1)

A1
− aD

2 aS
2 (QL2 −QG2)

A2

=
E2

A2
− E1

A1
− (

D1

A1
+

D2

A2
)T

=⇒ ∂TNB

∂T
> 0 ⇔ E2

A2
− E1

A1
− (

D1

A1
+

D2

A2
)T > 0

⇔ A1E2 −A2E1

A1A2
>

(D1A2 + D2A1)T
A1A2

⇔ A1E2 −A2E1

D1A2 + D2A1
> T (since A1, A2, D1, D2 > 0)

From Proposition 1 we know that

T is binding from 1 to 2 ⇔ A1E2 −A2E1

D1A2 + D2A1
> T

Therefore

∂TNB

∂T
=

E2

A2
− E1

A1
−
(

D1

A1
+

D2

A2

)
T > 0 ⇔ T is binding from 1 to 2;

(ii) T is binding from node 2 to node 1

Very similar, we can show

∂TNB

∂T
=

E1

A1
− E2

A2
−
(

D1

A1
+

D2

A2

)
T > 0 ⇔ T is binding from 2 to 1.

Q.E.D.

2.8.5 Appendix 5

Proof of Proposition 7:

By a definition of social welfare, we have WF = E[U(Π̃G1)] + E[U(Π̃G2)] + E[U(Π̃L1)] +

E[U(Π̃L2)] and W0 = E[U(π̃G1)] + E[U(π̃G2)] + E[U(π̃L1)] + E[U(π̃L2)].
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We can prove WF −W0 = ∆G1 +∆G2 +∆L1 +∆L2 ≥ 0 if we can show (i)–(iv) are satisfied.

(i) ∆G1 ≥ 0;

(ii) ∆G2 ≥ 0;

(iii) ∆L1 ≥ 0;

(iv) ∆L2 ≥ 0.

where

∆G1 = E[U(Π̃G1)]− E[U(π̃G1)];

∆G2 = E[U(Π̃G2)]− E[U(π̃G2)];

∆L1 = E[U(Π̃L1)]− E[U(π̃L1)];

∆L2 = E[U(Π̃L2)]− E[U(π̃L2)].

We’ll prove (i)–(iv) one by one as follows:

Part (i), denote p ≡ prob, then,

∆G1 = E[U(Π̃G1)]− E[U(π̃G1)]

= pU(π′G1 + (H ′
12 − η12)FTR12(G1)) + (1− p)U(π′′G1 + (H ′′

12 − η12)FTR12(G1))

− pU(π′G1)− (1− p)U(π′′G1)

= p log
(

1 +
(H ′

12 − η12)FTR12(G1)

π′G1

)
+ (1− p) log

(
1 +

(H ′′
12 − η12)FTR12(G1)

π′′G1

)
= p log

(
1 +

p(H ′
12 − η12)π′′G1 + (1− p)(H ′′

12 − η12)π′G1

(η12 −H ′′
12)π

′
G1

)
+ (1− p) log

(
1 +

p(H ′
12 − η12)π′′G1 + (1− p)(H ′′

12 − η12)π′G1

(η12 −H ′
12)π

′′
G1

)
= log

(
pp(1− p)1−p

[
1 +

(H ′
12 − η12)π′′G1

(η12 −H ′′
12)π

′
G1

]p [
1 +

(η12 −H ′′
12)π

′
G1

(H ′
12 − η12)π′′G1

]1−p
)

= log

(
pp(1− p)1−p [1 + XG1]

p

[
1 +

1
XG1

]1−p
)

where

XG1 ≡
(H ′

12 − η12)π′′G1

(η12 −H ′′
12)π

′
G1

> 0
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Then in order to show ∆G1 ≥ 0, we need to show

pp(1− p)1−p [1 + XG1]
p

[
1 +

1
XG1

]1−p

≥ 1

For notation simplicity, let x ≡ XG1 > 0, and A ≡ pp(1− p)1−p > 0, and define a function

f(·) such that

f(x) = A(1 + x)p(1 +
1
x

)1−p

Notice that when x = 1
p − 1, f(1

p − 1) = 1. So to prove f(x) ≥ 1 is equivalent to prove

the function f(x) is monotonically decreasing over the domain (0, 1
p − 1) and monotonically

increasing over the domain (1
p − 1,+∞). Rewrite f(x) as follows:

f(x) = A(1 + x)xp−1

f ′(x) = Axp−1 + A(1 + x)(p− 1)xp−2

= Axp−2[p(1 + x)− 1]

= Axp−2p[x− (
1
p
− 1)]

⇒ f ′(x)


< 0 if x < 1

p − 1;

> 0 if x > 1
p − 1;

= 0 if x = 1
p − 1.

That is, f(x) has a global minimum at x = 1
p − 1. The minimum is:

f(
1
p
− 1) = 1

Hence, f(x) ≥ 1, ∀ x ∈ (0,∞), or f(p) ≥ 1, ∀ p ∈ (0, 1). Notice if the regularity condition

is satisfied we have

1 > prob > probG1 =
(η12 −H ′′

12)π
′
G1

(H ′
12 − η12)π′′G1 + (η12 −H ′′

12)π
′
G1

=
1

(H′
12−η12)π′′G1

(η12−H′′
12)π′G1

+ 1
=

1
XG1 + 1

⇔ p ∈ (
1

1 + x
, 1) ⊆ (0, 1) (Recall p ≡ prob, x ≡ XG1)

So when the regularity condition is satisfied, i.e., G1 takes long positions in the FTR market,

we certainly have f(p) > 1, which directly implies ∆G1 > 0. If, on the other hand, the
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regularity condition is not satisfied, it can be easily shown that it corresponds to the case

where p ∈ (0, 1
1+x) and G1 takes short positions (although it is not allowed in this model) in

the FTR market, which also implies ∆G1 > 0. Finally, in the degenerate case where p happens

to be 1
1+x , then G1 takes zero position in the FTR market and ∆G1 = 0. Therefore regardless

whether G1 takes long, short or zero position in the FTR market, ∆G1 ≥ 0.

It is straightforward to verify that (ii), (iii) and (iv) are true using the exactly same proce-

dures as in (i). Since we have showed that (i)–(iv) are all satisfied, we’ve proved the proposition

result, WF ≥ W0. Q.E.D.
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CHAPTER 3. EVALUATING THE PERFORMANCE OF FINANCIAL

TRANSMISSION RIGHTS AUCTION MARKET: EVIDENCE FROM

THE U.S. MIDWEST ENERGY REGION

3.1 Abstract

This paper applies empirical methods to analyze performance of financial transmission

rights (FTRs) auction markets in the Midwest energy region (MISO). The data we used are

monthly FTR auction clearing prices and associated congestion revenues for the period April

2005 - March 2006. Based on the preliminary statistical analysis, we summarize and present

the stylized facts about the MISO FTR auction market. Moreover, we fit the data with linear

regressions and nonparametric kernel regressions, and carry out a bootstrap-based goodness-of-

fit test on the linear versus kernel fits. Regression results suggest that the MISO FTR market

participants are neither risk neutral or risk averse during the current sample periods. The

revenue sufficiency results show that the MISO FTR market is systematically losing money,

which suggests that market participants on average exhibit some degree of risk loving behavior.

More data are needed in order to obtain meaningful economic analysis such as estimating the

impact of an agent’s risk preference on his willingness to pay for the premium of FTR in this

complex market. It would be especially helpful to acquire the actual bidding and asking prices

of market participants in the MISO FTR auctions over time.

Keywords: Financial transmission rights (FTRs), FTR auctions, Congestion revenues, Risk

hedging, Nonparametric estimation, Kernel regression, Goodness-of-fit test

JEL Codes: G1, L9, C14
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3.2 Introduction

In March 2005, the Midwest Independent System Operator (MISO) officially adopted the

Wholesale Power Market Platform (WPMP) proposed by U.S. Federal Energy Regulatory

Commission (FERC) in April 2003. An important feature of FERC’s WPMP design is to help

alleviate the transmission congestion problems by issuing financial transmission rights (FTRs).

By construction, an FTR is a financial contract that entitles the holder to a stream of revenues

(or charges) based on the difference between the hourly day-ahead locational marginal price

(LMP) at the sink and source nodes. Due to congestion on transmission lines, day-ahead

LMPs can be very volatile, and FTRs make a hedging instrument against the price risks. In

principle, market participants could reduce the price uncertainty by purchasing FTRs for a

specified amount of MWs on the paths1 of the transmission grid that they anticipate to be

congested during a given period of time.

But in real practice, to what extent FTRs have performed in helping market participants

hedge transmission congestion exposure in the new Midwest wholesale power market is still

unclear. It is also interesting to empirically test and assess the risk preferences for the FTR

market participants. For example, do they exhibit the “usual” risk averse behavior as com-

monly assumed in theoretical models? Moreover, does the current FTR market satisfy the

revenue sufficiency condition resulted from a good market design? In this study, we will ad-

dress these questions and issues using econometric estimation tools with publicly available

MISO FTR auction data and historical LMP data.

As far as we know, no empirical work up to date has been done to analyze the MISO

FTR market. Even for a broader geographic range, only a handful few studies have been

conducted to investigate the empirical aspects of FTR market in other regions such as in the

state of New York. Adamson and Englander (2005) examined the efficiency of the New York

transmission congestion contract (TCC)2 market. They used monthly TCC auction prices and

congestion revenues between November 1999 and April 2003. A two-stage modeling approach
1FTRs are available not only for physical paths. They can be defined between any two nodes in the grid.
2TCC: Transmission Congestion Contract, which is one implemented form of FTR.
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was adopted to analyze the data. In the first stage, they used the time series ARCH-ARMA

model to forecast the mean and variance of spot prices (congestion rents). Then in the second

stage, a simple linear model was proposed to regress TCC auction prices on the predicted mean

and variance of spot prices from the first stage of modeling. From the results, they concluded

that the New York TCC auctions were highly inefficient, even after allowing for risk aversion

among bidders in the auctions.

Siddiqui et al. (2005) carried out another empirical study for the New York TCC market

based on annual TCC auctions in years 2000 and 2001. They found that although TCCs

appeared to provide a potentially effective hedge against volatile congestion rents, the prices

paid for TCCs were systematically different from the resulting congestion rents. Their conclu-

sion was that the unreasonably high risk premiums paid for the TCCs suggested an inefficient

market and that the possible explanations were the lack of liquidity in TCC markets and

the difference between TCC feasibility requirements and actual energy flows. However, these

results held only under the assumption that market participants are all risk-neutral. Risk-

averse agents, instead, may pay for TCCs the amount more than the expected congestion

charges. Therefore, the deviation of TCC payments from resulting congestion revenues did not

necessarily indicate market inefficiency.

In their follow-up work (Siddiqui et al. 2006), they re-analyzed the New York TCC data,

taking into account possible risk aversion of market participants. Instead of using a linear

model, they employed three different concave “utility functions” and fitted nonlinear regressions

to the TCC payments and revenues data. Their results showed that market participants were

only slightly risk averse (or even risk seeking, depending on the utility function employed).

Thus, risk aversion by itself could not fully explain the systematic divergence between the

TCC prices and congestion rents. The authors concluded that it was the very design of these

markets, rather than the behavior of market participants that led to the observed discrepancy

between prices and revenues.

In our study, we focus on the FTR market in the Midwest energy region (MISO), which has

never been investigated empirically in the literature. Compared with the other FTR markets
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such as New York’s, the MISO FTR market has a much shorter history. The scarcity of

available data with MISO poses a great challenge to reaching any complete conclusion about

this emerging market. Unavoidably, we need to make assumptions in order to analyze, to the

best extent, the data we could obtain. Although some of the assumptions cannot be tested

due to insufficient data, we will be able to check for validity of these assumptions once more

data become available. Through our analysis, we find a number of stylized facts as well as

evidence of the performance of the MISO FTR market. The main results show that based on

the current sample periods, the MISO FTR market is systematically losing money, which in

turn suggest that on average the market participants exhibit some degree of risk loving.

The rest of the paper is organized as follows. Section 2 provides some background informa-

tion about the MISO energy and FTR auction markets. In section 3, we review the underlying

theory of hedging and risk preferences on which our analysis is based. Section 4 provides a

detailed description of the data. The empirical methods and assumptions are discussed in

section 5. In section 6, we present and interpret our results. Finally, the concluding remarks

are given in section 7.

3.3 MISO Energy and FTR Markets

Founded on February 12, 1996, MISO is an independent and non-profit organization whose

primary roles are to provide equal access to the transmission system and ensure reliable and

efficient electric system in a competitive wholesale power market in the Midwest region. Cur-

rently MISO is managing transmission operations for all or parts of 15 U.S. states plus Mani-

toba province in Canada.

Figure 3.1 shows the current MISO operation territory. Since April 2005, MISO has been

operating a day-ahead energy market, a real-time energy market and an FTR market. The

day-ahead market is a forward market in which hourly LMPs are calculated for each hour of

the next operating day. According to MISO’s Market Concepts Study Guide (MISO 2005c),

the day-ahead market is cleared using the security-constrained unit commitment (SCUC) and

security-constrained economic dispatch (SCED) algorithms to satisfy energy demand bid and
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Figure 3.1 The Current Midwest Independent System Operator (MISO)
Service Territory

supply offer requirements. To be specific, the objective in clearing the day-ahead market is to

minimize the costs of day-ahead energy procurement over the 24-hour dispatch horizon based

on the offers and bids, subject to network constraints and resource operating constraints. The

results of the day-ahead market clearing include hourly LMP values and hourly demand and

supply quantities, which are posted on MISO’s market portal on 1700 hours EST. The real-time

energy market, in contrast, is an instant balancing market in which the LMPs are calculated

every five minutes, based on MISO dispatch instructions and actual system operations. These

two markets operate in a coordinated sequence and are settled separately. In the settlement of

the day-ahead market each hourly MW injection is paid the day-ahead LMP at its node and

withdrawals are charged the day-ahead LMP at their respective nodes. The day-ahead LMPs

are also used to establish the settlement value of FTRs and bilateral transactions. The real-

time settlement is based on actual hourly quantity deviations from the day-ahead scheduled

quantities and on real-time prices integrated over the hour. Any deviation in the quantity from
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the day-ahead schedule (including bilateral transactions) is charged or paid real-time LMPs.

3.3.1 LMP Components

Since FTRs crucially depend on locational marginal prices (LMPs), it is important to take

a close examination on LMP and its components. By definition, LMP at any given pricing

location is the minimum incremental cost of servicing one additional unit of demand at that

location under the constraints of production, congestion and transmission losses. LMPs vary

by time and location. Variability of LMPs is due to the physical constraints, congestion and

losses. For each node, MISO determines three separate components of its LMP, namely the

marginal energy component (MEC), marginal congestion component (MCC) and marginal loss

component (MLC). MEC is the LMP of the reference node, so is the same for all the nodes.

MCC and MLC of a certain node represent the marginal cost of congestion and marginal cost

of losses, respectively at that node relative to the reference node. Formally,

LMPn = MECr + MCCn + MLCn

LMPr = MECr

where r is the reference node and n is any node other than the reference one.

Of the three LMP components, MECr is calculated as the marginal cost of energy at the

reference node r, so is determined by the cost functions of the generators at that node. The

congestion component, MCCn is calculated as follows:

MCCn = −

(
K∑

k=1

GSFnk × FSPk

)

where K is the number of thermal or interface transmission constraints (also called flowgates),

GSFnk is the shift factor (or distribution factor) for the generation at node n on flowgate k

and FSPk is the shadow price of the thermal limit on flowgate k. Intuitively, GSFnk is the

proportion of each MW injected at node n and withdrawn at the reference node r and FSPk

is the cost saved from one MW increase in the capacity of flowgate k3. In the Midwest market,
3According to the industry convention, the effect of losses is ignored in determining GSF s.
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congestion is handled financially through the MCC of the LMP, and the congestion revenue

from holding the FTR is determined by the difference in MCCs.

MLCn is calculated using the equation

MLCn = (DFn − 1)×MECr

where DFn is the delivery factor for node n to the reference node. DFn is equal to 1 − ∂L
∂Gn

,

where L is system losses and Gn is the amount of power injected at node n. Therefore, ∂L
∂Gn

is the change in system losses due to an incremental change in the power injection at node n

holding everything else constant.

3.3.2 Overview of MISO FTR Acquisition

FTRs are tradable financial instruments that allow market participants to hedge against

the cost and uncertainty that may arise from congestion in the transmission grid. The FTR

holders are entitled to a stream of revenues or charges based on the congestion over the FTR

path. FTRs are used in the day-ahead market only and do not apply to the real-time market.

They do not protect market participants from congestion charges related to scheduling power

in the real-time market or deviation from the day-ahead schedule. Nor do they hedge against

transmission loss charges. Besides, FTRs are independent of the physical power dispatch. The

FTR holder has the financial right to the congestion between two specified nodes regardless of

the actual energy deliveries.

An FTR is specified by its source and sink location, the MW amount, the term for which the

FTR is in effect, the time period (peak or off-peak hours), and whether the FTR is an obligation

or option. FTR options are currently not available in the MISO market. An FTR obligation

grants the holder the right to collect, for each MW of FTR, the congestion rent accumulated

from the source to the sink for every hour during the effective period. The congestion rent

is determined by the difference between the congestion components in the day-head LMPs at

the sink and source. Therefore, an FTR obligation can have a positive or negative economic

value, depending on the actual congestion pattern between the source and sink on which the

FTR is defined. During the hours when the congestion component at the sink is greater than
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the congestion component at the source, the FTR yields a positive revenue to the holder. If,

instead, the congestion occurs from the sink to the source, the holder of the FTR will have to

pay MISO an amount equal to the congestion rent in the congested direction, or equilavently

receive a negative revenue.

In the Midwest, market participants can acquire FTRs through allocations (annual and

monthly), auctions (annual and monthly) and the secondary market. FTRs are first allocated in

the annual allocation based on existing entitlements from transmission service reservations and

grandfathered agreements. The annual FTR auction is held right after the annual allocation

and prior to the beginning of each year for the subsequent four seasons4. In this auction,

market participants can submit offers to sell or bids to buy FTRs and MISO determines the

winning (i.e., market-cleared) sellers and buyers. In order to be eligible for the annual auction,

the FTR must be valid for the entire period of the seasons in the auction. A monthly allocation

is performed for each operating month to come. Those FTRs eligible in the initial allocation

that did not receive their full entitlement in FTR awards can be re-considered in this monthly

allocation process. Then after the monthly allocation takes place, the monthly auction is

conducted. Any FTR eligible for the monthly auction must be valid for the entire month in

the auction. The exact timeline for the MISO monthly FTR allocations and auctions are given

in Appendix for a sample month (August 2005). There is also a secondary market for buying

and selling FTRs. The FTR allocations are irrelevant to our research purpose in this paper,

as there is no market or price for the allocation. Therefore, we do not consider the allocations

in evaluating the market performance. In both the annual and monthly auctions, FTRs are

sold and bought at the market clearing prices. The determination of the market clearing prices

will be explained later. However, the data for the annual allocations are not sufficient since

MISO has only adopted FERC’s WPMP design since March 2005. In addition, a time interval

of three months may be too long for discerning any change or trend in this market during the

one-year period. Therefore, a monthly basis is proper for our research purpose. Although the

secondary market is also relevant to our study, we have to ignore it, because little information
4The four seasons are: (i) Winter: December, January, February; (ii) Spring: March, April, May; (iii)

Summer: June, July, August; (iv) Fall: September, October, November.
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is available about it. In all, considering relevance and availability, we finally choose to focus

on the monthly FTR auctions and ignore the possible effects of other means to obtain FTRs.

3.3.3 MISO Monthly FTR Auctions

MISO conducts monthly FTR auctions for two purposes: (1) to allow MISO to sell FTRs

for the adjusted monthly FTR capability of the market footprint, and (2) to facilitate the

buying and selling of existing FTRs between market participants. Market participants buy

from or sell to the available “pool” of system FTR capacity. All FTRs at the monthly auction

have a term of one month beginning on the first day of the month following the auction.

Market participants must submit their offers or bids to MISO during the monthly bidding

period and MISO posts the auction results no later than 5 business days before the start of the

subject month (see Appendix for a more detailed MISO FTR allocation and auction timeline

for a sample month - August 2005). Each monthly auction consists of two separate auctions:

one for the peak period and the other for the off-peak period. Peak is the period of time

from 0600 hours Eastern Standard Time (EST) to 2200 hours EST on weekdays excluding

holidays5. Off-peak is all periods not classified as peak. The buyer of a peak (off-peak) FTR

from the monthly auction is entitled to the aggregate congestion rents of the peak (off-peak)

hours during the whole month.

FTR buyers are responsible for submitting a bid that indicates the following:

1. Type of FTR (obligation or option)

2. FTR source and sink

3. Maximum MW quantity desired

4. Maximum acceptable price, in $/MW

5. Period (peak or off-peak)
5These holidays are specified by North American Electric Reliability Council (NERC)
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Similarly, FTR sellers should submit an offer including the above items 1 through 5 except

that item 3 now becomes the maximum MW quantity offered instead of desired. Given the

offers and bids for each monthly auction, MISO determines the winners (traders that get

cleared, i.e., the infra-marginal traders) as well as FTR clearing quantities and clearing prices

by solving a linear programming problem. Specifically, it maximizes the value of FTRs bought

minus FTRs sold by auction participants subject to simultaneous feasibility constraints with

“n-1” security constraints. All comparable FTRs are sold at the same market clearing price

expressed in $/MW, which is calculated as the difference in the shadow price of the power

flow balance constraint at the FTR source and sink in the FTR auction linear programming

problem above. It can be interpreted as the negative of the marginal change in the objective

function value due to an infinitesimal change in the flow from the FTR source to the sink. It

is worth noting that the FTR clearing price can be negative, which means that the market

participants who buy the FTR will receive money from MISO whereas those who sell the FTR

will pay money to MISO. This usually happens when the particular line associated with this

FTR is anticipated to be congested in the direction opposite to that specified by the FTR.

3.4 Theory

In this section, we first illustrate, through several examples, the role of FTRs in hedging

against risks caused by the volatile location marginal prices (LMPs). In doing so, we consider

two cases: electricity transaction scheduled on bilateral agreements and electricity transaction

purely via the marked-based power pool. Then we demonstrate the relationship between the

expected revenue from holding FTRs and the agent’s willingness to pay.

3.4.1 Hedging Role of FTR

LMPs in the wholesale electricity market not only provide the right incentives for generation

and consumption, but also create a need to hedge the price changes. This leads to the interest

in FTRs. Power transactions are usually settled through bilateral schedules or via the market-

based power pool. In either case, FTR provides a hedge against the congestion charge by
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reimbursing the holders part or all of the charge. How FTR works as an hedging instrument

is illustrated through the following examples6.

Let us first consider the case of bilateral agreements. If there were no transmission conges-

tion, we can treat all production and consumption as if they took place in the same location

since both buyer and seller are settled with the same price, which is the single equilibrium

price in the market. Then the natural arrangement is to contract for differences against the

equilibrium price. As depicted in Figure 3.2, a GENCO (G) and an LSE (L) are located at

node 1 and node 2, respectively. The two nodes do not have to be directly connected by a

transmission line, so we use the dashed line between them. The nodes and lines may only

be part of a larger network, which is not drawn in the figure. Suppose G and L agree on a

(bilaterally agreed) price of pB ($/MWh) for trading a fixed quantity of electricity q MWs at

a specific hour. If there is no congestion in the network during this hour, the prices (or more

precisely the LMPs) at all nodes would turn out to be the same, hence denoted by a common

price LMP . G will then sell electricity to the market at LMP and L will buy electricity from

the market at LMP . Note that the q MWs that L purchases do not have to be produced by

G, and the electricity that G generates may be bought by other LSEs. So the arrows indicate

the direction of the contract path. If LMP > pB, under the contract, G owes L LMP − pB

for each of the q MWs over this hour. On the opposite, if pB > LMP , L owes G pB − LMP

for each of the q MWs over this hour. This is the so-called “contract for difference” (CFD),

which locks the actual transaction price at the predetermined price pB for both G and L, and

thus provides a perfect hedge against the price risk. Therefore, in the absence of congestion,

a bilateral arrangement between the GENCO and the LSE can capture the effect of aggregate

movements in the market, as the single market price gets up or down over time.

Most of the time, however, there is congestion somewhere in the transmission network. In

that case, nodal prices will differ depending on the locations, and G and L may no longer

face the same price. This situation is illustrated in Figure 3.3. Let LMP1 and LMP2 be

the locational marginal prices at node 1 and 2, respectively, and LMP1 6= LMP2 due to the
6For simplicity, we do not consider transmission losses in our examples.
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Figure 3.2 Bilateral contract with no congestion

congestion. Also let pB be the bilaterally agreed contract price between G and L. Then at the

settlement G will sell electricity to the market for LMP1 and L will buy electricity from the

market for LMP2. If LMP1 < pB < LMP2, then L pays LMP2−pB more than the contracted

price and needs to be compensated for the excessive payment. On the other hand, G receives

pB − LMP1 less than the contracted price, which also needs to be compensated. Obviously,

it is impossible to satisfy both parties only through the CFD and something else is needed to

completely hedge the price risk.

Figure 3.3 Bilateral contract with congestion

Still consider the situation in Figure 3.3. Now suppose that apart from the CFD, G may
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obtain an FTR for q MWs defined from node 1 to node 2. The FTR entitles G to the difference

in the LMP between the two nodes, i.e. LMP2 − LMP1 for that hour. L pays LMP2 for the

power. The settlement system in turn pays G LMP1 for the power supplied. As the holder

of the FTR, G would receive LMP2 − LMP1 for each of the q MWs covered under the FTR.

Therefore G ends up receiving LMP2 for each MWs sold and L ends up paying LMP2 for each

MW bought. In this sense, we come back to the previous situation when the price is the same

at all nodes and the CFD will work out now. If LMP2 > pB, G will compensate L for its

excessive payment LMP2 − pB according to the CFD. If LMP2 < pB, G will be compensated

for the loss pB − LMP2 of L. As a result, no matter how the LMPs change, the transaction

would be effectively settled at the deterministically and bilaterally agreed price pB. On the

other hand, L can also buy the same FTR for q MWs but in the opposite direction, i.e. from

node 2 to node 1, and receive the difference LMP1−LMP2 for each MW. Together with LMP2

it pays for buying power from the market, L actually pays LMP1, exactly the price at which

G sells power. Again, G and L face the same price with the aid of the FTR. Then by the

CFD, the final price for each party will be the predetermined contracted price pB. Therefore,

in the presence of transmission congestion, FTR together with CFD can provide full hedge

against the risk associated with the LMPs. The function of FTRs in the scenario of bilateral

contract actually lies in equalizing the price that the seller and buyer face, which provides

the condition for the CFD to be workable. The FTR provides hedge against locational price

risks, while the CFD, against temporal price risks. In this example, the FTR together with

CFD provides a perfect hedge for both parties, because the quantity of FTRs obtained exactly

matches the contracted quantity of electricity. If G or L buys the FTR for an amount less than

the contracted quantity of electricity, they will only have partial coverage.

In summary, a seller and a buyer entering into a bilateral transaction of electricity between

two nodes can always hedge against the price risk by using the FTR and CFD jointly. The

FTR that the seller or buyer purchases should always be in the direction from its own node to

the other’s.

Now let us come to the case with no bilateral schedules. That is, each GENCO simply
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injects electricity to the power pool and gets the LMP at its own node for each MW injected.

Each LSE withdraws electricity from the same power pool and pays the LMP at its own node

for each MW withdrawn. Hence a GENCO does not know or care about where its power is

withdrawn and who actually buys the power it has produced. Similarly, an LSE does not

know where the power it buys comes from and who generates it. This is different from the

transaction under a bilateral contract in which the seller and the buyer as well as the injection

and ejection nodes are designated and the transaction price is predetermined7. In the bilateral

contract case, a combination of the FTR and CFD can provide a perfect hedge and make the

payment and revenue nonrandom. Without a bilateral contract, however, it is not obvious

to a market participant that between which two nodes he pays the congestion charge. Hence

he does not know for sure between which two nodes he should obtain the FTR to hedge the

potential congestion. We can see this from the following example as depicted in Figure 3.4.

Figure 3.4 Transaction via a power pool with congestion

This figure looks similar to Figure 3.3, but notice that only the q MWs injection of G is

given. G does not know where these q MWs would be withdrawn or through what paths they

would be transited. G only knows that it would get LMP1 for each MW it produces. LMP1

is volatile and fluctuates with the generation, loads and congestion patterns. G is exposed to

the price risk and might want to hedge against it. Suppose that LMP2, for some reason, is
7Though in the case of bilateral transaction, the q MWs purchased by the LSE may not be the same q MWs

that GENCO produces, either.
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relatively stable and does not change much8. If G purchases an FTR of q MWs from node 1

to node 2, it would get LMP1 + (LMP2 − LMP1) = LMP2 for each MW generated. In this

sense, holding the FTR reduces G’s price uncertainty by making its revenue less volatile. If

LMP2 is virtually nonrandom, then the FTR provides a perfect hedge for G. If LMP2 is also

random, but is much more stable than LMP1, then the FTR provides a non-perfect partial

hedge. To reduce its revenue uncertainty, G could effectively associate its revenue with LMP2

by holding the FTR from node 1 to node 2.

This is not the only choice for the hedging. In fact, G can choose a set of FTRs (portfolio

of FTRs) to achieve the same result. Let us take another example with a three-node network

in Figure 3.5.

Figure 3.5 The three-node electric network example

In this example, the only generator G is located at node 1 and the only LSE L is located at

node 2. For computational simplicity, assume that each line has the same impedance. Then of

each MW injected at node 1, 2
3 , 1

3 and 1
3 will move along line 1, line 2 and line 3, respectively.

Clearly, G will have a revenue of q ×LMP1 from injecting q MWs of electricity at node 1. To
8This might occur at a hub which consists of a set of nodes and whose LMP is derived from the average of

the LMPs of those nodes.
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hedge against the congestion charge, G may obtain q MWs of FTR defined from node 1 to node

2. Then G’s total revenue will be q×LMP1 + q× (LMP2 − LMP1) = qLMP2. As mentioned

earlier, if LMP2 is nonrandom, then the FTR provides G with a perfect hedge. This is not

the only way to achieve the deterministic revenue qLMP2. An alternative could be that G

obtains a portfolio of FTRs with 2
3q MWs of FTR from node 1 to node 2, 1

3q MWs of FTRs

from node 1 to node 3 and 1
3q MWs of FTRs from node 3 to node 2. G will again end up with

q × LMP1 + 2
3q × (LMP2 − LMP1) + 1

3q (LMP3 − LMP1) + 1
3q (LMP2 − LMP3) = qLMP2.

This FTR portfolio also links G’s revenue to LMP2, which is less volatile than LMP1. As will

be seen later, market participants in practice sometimes purchase more than one single FTR

and indeed construct FTR portfolios.

Figure 3.6 No bilateral transaction with congestion: FTR portfolio

Figure 3.6 gives another example of hedging using an FTR portfolio. Similar to the pre-

vious examples, G injects q MWs to the power pool and receive payments at its own nodal

price LMP1 for each MW injected. Since LMP1 is varriate, G may want to hedge against the

uncertainty using FTRs. Suppose that the LMPs at nodes 2, 3 and 4 change almost indepen-

dently, such that the pairwise correlations between the LMPs at the nodes 2, 3 and 4 are very

small. Let σ2
n be the variance of the LMP at node n, for n = 1, 2, 3, 4. Then G can reduce the



www.manaraa.com

82

price risk by holding a portfolio of FTRs associated with the nodes 2, 3 and 4. Let q12, q13,

and q14 ≥ 0 be the quantity of MWs that G obtains for the FTR from 1 to 2, from 1 to 3 and

from 1 to 4, respetively and assume that q12 + q13 + q14 = q. Consequently, G will get

LMP1q + (LMP2 − LMP1) q12 + (LMP3 − LMP1) q13 + (LMP4 − LMP1) q14

= q12LMP2 + q13LMP3 + q14LMP4

which is a weighted average of the LMPs of the three nodes. This revenue is still random

and its variance can be calculated as

var(q12LMP2 + q13LMP3 + q14LMP4)

= q2
12σ

2
2 + q2

13σ
2
3 + q2

14σ
2
4 + 2q12q13σ23 + 2q12q14σ24 + 2q13q14σ34

= q2
12σ

2
2 + q2

13σ
2
3 + q2

14σ
2
4

where σ23, σ24 and σ34 are the pairwise covariances of the LMPs at nodes 2, 3 and 4. The

second equality holds when the three LMPs are pairwisely uncorrelated. The variance of G’s

revenue in the absence of the FTR portfolio is

var (qLMP1) = (q12 + q13 + q14)
2 σ2

1

If LMP2, LMP3 and LMP4 are almost constant, that is, σ2
2, σ2

3 and σ2
4 are nearly zero,

then var(q12LMP2 + q13LMP3 + q14LMP4) ≈ 0 and holding the FTRs completely eliminates

the risk associated with LMP1. If LMP2, LMP3 and LMP4 are no more volatile than LMP1,

that is, if σ2
2 ≤ σ2

1, σ2
3 ≤ σ2

1 and σ2
4 ≤ σ2

1, then

var(q12LMP2 + q13LMP3 + q14LMP4) ≤ var (qLMP1)

This relationship may also hold if LMP2, LMP3 or LMP4 are negatively correlated. Hence,

holding this FTR portfolio lowers G’s risk exposure, although the portfolio may not completely

eliminate the risk. In all, the FTRs provide G with a hedge, but not necessarily a perfect one.

From the above examples, we find that under a bilateral agreement, FTRs together with

CFDs can always provide a perfect hedge against the price risk and a GENCO ends up with
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a fixed revenue. In comparison, in the absence of bilateral agreements, the resulting revenue

that a GENCO receives from selling electricity and holding FTRs is usually a function of the

LMPs. So the revenue may not be fixed and its variability depends on the variations of LMPs

at different nodes and their covariances. Under some conditions, this variability of G’s revenue

is less than the one if G does not have FTRs, and FTRs provide a hedge against the risk. The

hedging functionality of FTRs is similar for LSEs who purchase, rather than sell power. In

analogy, holding FTRs can also provide a hedge against the volatile revenue of an LSE.

A complete analysis of FTR hedging requires knowledge of the power transactions in which

market participants are primarily engaged – whether it is through bilateral contract or via

the power pool. The literature, however, often ignores the type of power transactions which

motivates the market participants to obtain FTRs and only focuses on the random congestion

charges. Knowing that the volatility in congestion charges comes from the volatility in LMPs,

most papers conclude that market participants simply have to purchase enough FTRs to hedge

their transmission congestion exposure perfectly. They regard the congestion charges as the

only random variables and make their reasoning this way: since market participants can have

these charges reimbursed by holding FTRs, FTRs will provide a perfect hedge. This, as can

be seen from our previous examples, generally does not hold. An agent chooses FTRs to hedge

against the risk with the LMP exposure, not simply the congestion charges. The FTRs may

provide a full coverage for the congestion payment but not for the market participant’s total

income from power transactions via the pool.

3.4.2 Theoretic Framework

Although from the previous subsection, we know that in some cases holding FTRs may not

completely eliminate the uncertainty that an agent faces in the market, we make a simplifying

assumption that FTRs will always provide a perfect hedge for our theoretical analysis. That

is, an agent can make his profit deterministic or free of price risk by holding an FTR. Let

w denote the non-stochastic total profit of an agent resulting from obtaining an FTR. Then

without the FTR, the agent’s profit is w − R, where R is the congestion charge (or revenue)
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the agent has to pay, and R is a random variable. Hence, w − R is also a random variable

and the agent’s profit is uncertain. An FTR reimburses the congestion charge R for the agent

no matter how much R is. So the expected revenue from holding the FTR is E (R). As a

result, holding the FTR locks the agent’s profit at w and provides a perfect hedge against the

risk. Of course the agent has to pay in order to acquire the FTR. We will use F to denote the

maximum $ amount he is willing to pay for the FTR.

Consider a risk-neutral agent, his utility function can be expressed as

u (π) = a + bπ

where a and b are constants and b > 0; π is the agent’s profit or payoff. Suppose that the

congestion charge R is distributed according to a probability density function (PDF) f (R).

Then in the absence of FTR, the agent’s profit π = w−R is a random variable and his expected

utility is given by

Eu(w −R) =
∫

u (w −R) f (R) dR

= a + b (w − E (R))

If he purchases FTR for $F , his utility will be

u (w − F ) = a + b (w − F )

By certainty equivalence theory, the agent’s willingness to pay (F ) for the FTR satisfies

Eu(w −R) = u (w − F )

Hence,

F = E (R) (3.1)

which means that a risk-neutral agent is willing to pay up to exactly the expected charge

or revenue from holding the FTR. Note that the relationship still holds if we divide both sides

of equation (3.1) by any positive constant. Choosing the MWs of the FTR as the divisor, we

then have that the expected congestion revenue of one MW FTR or the expected unit revenue

(which is equal to the sink LMP less the source LMP) should be equal to the unit willingness to
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pay under risk neutrality. This justifies our use of congestion revenue per MW of FTR and the

unit price in later analysis, instead of multiplying them by the purchase quantity. Therefore,

if the expected unit revenue is plotted against the unit willingness to pay, it should be a 45

degree line if all agents are risk neutral.

Now consider a risk-averse agent, he would be willing to pay extra premium to stabilize

his profit to a deterministic amount. By certainty equivalence theory, we have the following

equation

Eu(w −R) = u(w − F ) (3.2)

By Jensen’s inequality, it follows that

u(w − F ) = Eu(w −R) < u(E(w −R)) = u(w − ER)

Since utility function u(·) is monotonically increasing, it is straightforward that the willingness-

to-pay for FTR (F ) is always greater than the expected value for congestion charge (R), that

is,

F > ER (3.3)

This means a risk-averse agent is willing to pay more than the expected charge or revenue

from holding the FTR. However, the further relationship between F and ER depends not only

on the entire distribution of random variable R but also on the specific functional form of

utility function u(·). It is beyond the scope of this paper to explore such relationship in full

detail.

3.5 Data

Our study focuses on the one-month FTRs that were purchased in the monthly FTR

auctions in MISO from April 2005 to March 2006. The data we use are obtained from the

FTR auction results of the twelve months and the historical day-ahead LMP files, which are all
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publicly available on MISO’s website9. Specifically, the results of each FTR monthly auction

include, the buyer, the source and sink, the MW amount awarded, the class (peak or offpeak),

whether it is an obligation or option and the market clearing price measured in $/MW10.

For each MW of FTR awarded, the buyer must pay the clearing price of that FTR, which is

determined in the auction for each month t. So the clearing price is actually the unit cost of

obtaining an FTR. Let Fm,n
t denote the market clearing price of the FTR defined from node

m to node n for month t, t = 1, ..., T .

The auction results do not directly report the unit revenue from holding an FTR, that is, the

congestion rent per MW accumulated from the source to the sink for the effective month. Hence

in the data pre-processing stage, we calculate the unit revenue using the congestion component

(MCC) of the day-ahead LMPs, which can be found in the historical day-ahead LMP files. For

each of the twelve sample months, the historical day-ahead LMP data set includes the MCC

of each node for each of the 24 hours in each day of that month. For example, in May 2005,

there are 31 days, each having 24 hours. So, for a node such as WPS.PULLIAM3, we have

24 × 31 = 744 hourly MCCs. The frame of the hourly MCCs for node WPS.PULLIAM3 in

May 2005 is given in Table 3.1 as follows.

Table 3.1 Hourly MCCs of node WPS.PULLIAM3 in May 2005

MCC d = 1 d = 2 d = 3 . . . d = 31
h = 1 0.04 0.46 2.89 . . . 0.62
h = 2 0.02 0.88 2.99 . . . 1.69
h = 3 0.04 0.60 2.92 . . . 1.67
. . . . . . . . . . . . . . . . . .

h = 24 0.04 0.29 1.34 . . . 3.79

The value in each cell in the figure is the MCC of node WPS.PULLIAM3 for the corre-

sponding hour h of the corresponding day d in May 2005. For example, the cell corresponding

to h = 1 and d = 1 is the MCC of node WPS.PULLIAM3 in the first hour on May 1, 2005.

This table structure applies to all the other nodes in each month of the sample period. During
9http://www.midwestiso.org/

10So far, all the FTRs auctioned in MISO are obligations.
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the twelve months in our study, the nodes and number of nodes for each month stay the same

within that month, but may not be so across months. As time goes on, new nodes are added

to MISO’s transmission network or some existing nodes are removed from it. The number of

nodes for each month as well as the change in the number from the previous to the current

month are given in Table 3.2.

Table 3.2 Reported number of nodes in MISO service region (April 2005 –
March 2006)

Month Number of nodes Change Percentage
Apr-05 1471
May-05 1471 0 0.00%
Jun-05 1496 25 1.70%
Jul-05 1496 0 0.00%

Aug-05 1496 0 0.00%
Sep-05 1508 12 0.80%
Oct-05 1508 0 0.00%
Nov-05 1508 0 0.00%
Dec-05 1535 27 1.79%
Jan-06 1536 1 0.07%
Feb-06 1536 0 0.00%
Mar-06 1520 -16 -1.04%

Given the MCC data described above, the revenue that the FTR owner gets for each MW

of FTR held can be derived as the sum of the difference between the hourly sink and source

MCCs in the day-ahead market over all hours in the effective month. Let h = 1, ..., 24 index

the hour, and d = 1, ..., Dt index the day, where Dt is the number of days in month t. Let pn
hdt

be the MCC of node n at hour h on day d in month t. Then Rm,n
t , the revenue from holding

one MW of the FTR from node m to node n during month t can be computed as

Rm,n
t =

∑
d

∑
h

(pn
hdt − pm

hdt) (3.4)

We can also call Rm,n
t the unit revenue of the FTR from m to n. Note that for peak FTRs, the

revenues are calculated by aggregating MCC differences for the peak hours; for off-peak FTRs,

the MCC differences used in calculating the revenues are all those for the off-peak hours. So,
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in equation (3.4), the range of d and h over which the MCC difference is aggregated depends

on whether the FTR is peak or off-peak.

We notice that in some months, some sources or sinks on which the FTRs are defined

cannot be found in the list of the day-ahead LMP file of the corresponding months. In that

case, we are unable to calculate the revenue from holding those FTRs. For example, in June

2005, the market participant EMMT bought 5.8 MWs of the FTR from node NSP.CHARA6

to node GRE.WILM, but the source node is not found in the LMP file for the same month.

Such discrepancies occur because the commercial model changed after the FTR auction results

were finalized. For example, the June 2005 auction was conducted in May 2005. The June

commercial model was propagated into the FTR system after the June 2005 auction was

completed. Sources and sinks on the awarded FTRs were corrected to match the updated

model, but the reported auction result was not updated since it reflected the actual outcome

from the auction as it was conducted. A snapshot of the most current active FTRs in the

system is available on the portal, but not currently posted on MISO public website. In our

analysis, we shall ignore any FTR defined on the “missing” nodes.

Similar to the number of nodes, the number of FTRs purchased in the monthly auctions

is not the same across all months either. More FTRs were bought in some months than

others, as is shown in Table 3.3. Several factors contribute to the fluctuating number of the

FTRs purchased. As the number of nodes on which FTRs are defined varies across month,

the change in the FTR purchase number is natural and understandable. For example, if new

nodes are added to the network, more FTRs will be available, since they can be defined on

more combinations of nodes. Besides, seasonality may also cause more FTRs to be purchased

in some months than others. With only one year’s data, we cannot tell much about the effect of

seasonality on the FTRs purchased. A longer sample period for a relatively stable transmission

network is needed for analyzing the seasonality effect. This will be possible for MISO as time

goes on.

Before proceeding, let us introduce some notations for FTR types that is applied system-

atically throughout the rest of this paper. Since all auctioned FTR can be classified as either
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Table 3.3 Reported number of distinct FTRs (April 2005 – March 2006)

Month Number of distinct FTRs Month Number of distinct FTRs
Apr-05 164 Oct-05 932
May-05 255 Nov-05 1448
Jun-05 349 Dec-05 1446
Jul-05 863 Jan-06 1278

Aug-05 989 Feb-06 2105
Sep-05 870 Mar-06 1761

peak or off-peak11, and people’s purchasing decisions regarding peak and off-peak FTRs are

expected to be different, we classify our data into two parts: peak and off-peak accordingly.

In addition, since there are certain FTRs (defined by point of source and point of sink) that

are purchased by more than one buyers, and since all of them will receive the same prices and

congestion rents, we will also distinguish our data between non-distinct and distinct. The non-

distinct data are simply the original data while the distinct data are the data where duplicated

FTR purchase on the same FTRs are removed.

By this POND (Peak, Off-peak, Non-distinct, Distinct) classification, we will have four

different classes of FTRs over the period April 2005 - March 2006. These four classes of FTRs

are: ON (Off-peak and Non-distinct), OD (Off-peak and Distinct), PN (Peak and Non-distinct)

and PD (Peak and Distinct). All the statistical computations are implemented using R12.

A quick overview of the data gives us some stylized facts of the MISO’s FTR market.

First of all, for all four types of FTRs, the average clearing prices and congestion revenues

collected are highly volatile across all months. For example, the average clearing price of PD

FTRs in April 2005 is highly negative (-6313.36), while the value in January 2006 is highly

positive (960.31). This might be a sign of an immature and unstable new market. The second

observation is that for most of the FTRs awarded, there was only one buyer for each FTR.

In other words, the difference between distinct and non-distinct FTRs is not large, which may
11Peak and off-peak periods are as defined on Section 3.3.3 in this paper.
12R is an open-source software environment for statistical computing and graphics. More information about

R can be found at http://www.r-project.org.
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imply that the MISO monthly FTR auction market is quite thin. See Table 3.4 for reported

number of non-distinct and distinct FTRs and their difference for the sample period.

Table 3.4 Reported number of non-distinct and distinct FTRs (April 2005
– March 2006)

Month NumNa NumDb NumN-NumD
Apr-05 167 164 3
May-05 311 255 56
Jun-05 353 349 4
Jul-05 890 863 27

Aug-05 1062 989 73
Sep-05 911 870 41
Oct-05 1011 932 79
Nov-05 1569 1448 121
Dec-05 1707 1446 261
Jan-06 1510 1278 232
Feb-06 2218 2105 113
Mar-06 1988 1761 227

aNumber of non-distinct FTRs
bNumber of distinct FTRs

The result from Table 3.4 indicates that the liquidity of the monthly MISO FTR market

increases during the one-year period. In April 2005, the market was so illiquid that there were

only 3 more non-distinct FTRs than distinct FTRs. The overall tendency in the difference

was increasing as time went on, although the difference in June, September 2005 and March

2006 decreased from the previous month. These fluctuations may be explained by seasonality

factors, but we need more information to provide a definite answer.

3.6 Empirical Methodologies

3.6.1 Overview

In this study, the goal is to empirically analyze the performance of MISO FTR market

based on 12 month data. In addition, we want to explore the possible risk preference exhibited

by the market participants. As shown earlier, a risk-neutral agent is willing to pay FTR up
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to his expected congestion revenue accumulated from the source to the sink specified by the

FTR.

An interesting hypothesis we would like to test is as follows:

H0 : ERm,n
t = Fm,n

t , ∀m,n ∈ Ω, t = 1, ..., T (3.5)

where Rm,n
t is the revenue from holding one MW of the FTR from node m to node n for

month t, Fm,n
t is the market clearing price of the FTR defined from node m to node n for

month t, and Ω is the set of all possible pairs of injection and withdrawal node. This hypothesis

is to test if the expectation of the unit congestion revenue of an FTR ($/MWh) is equal to the

clearing price of that FTR during month t.

Or equivalently, we can test this hypothesis via the following regression specification:

ERm,n
t = α0 + α1F

m,n
t + ηt (3.6)

where ηt is a mean zero iid error term. Since we do not have data for the expected value

of unit congestion revenue ERm,n
t , we have to make a transformation on the above regression

specification.

Rm,n
t = β0 + β1F

m,n
t + εt (3.7)

where εt = (Rm,n
t − ERm,n

t ) + ηt and E[εt] = 013.

The estimated β0 and β1 should be close to 0 and 1, respectively, if the MISO FTR market

is populated with market participants with risk neutral risk preference.

In the following subsection, we first discuss briefly the linear regression model to estimate

Equation (3.7); then move on to introduce the nonparametric kernel regression model to esti-

mate general relationship between Rm,n
t and Fm,n

t . Finally, we carry out a goodness-of-fit test

13Note that the transformation step from (3.6) to (3.7) is justified because (a) the transformed error term
εt is still mean zero, and (b) the independent variable F m,n

t is truly predetermined, i.e., market participants
purchase FTRs at the clearing price before the associated congestion revenue accrues to them one month later.
The cost of doing so is the potential loss of statistical power. But since as the estimation result shows later,
we actually reject all the significance tests for the parameters, the loss of power is then not of a concern in this
study.
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to see if the simple linear relationship between expected congestion revenue of FTR and its

clearing price could be refuted.

3.6.2 Linear Regression Model

For simple notation, let x denote the monthly FTR auction clearing price (Fm,n
t ) and y

denote its associated congestion revenue (Rm,n
t ). The simple linear model can be specified as:

yi = β0 + β1xi + εi (3.8)

Under ordinary least squares (OLS) estimation, the estimated coefficients β̂ is:

β̂ = (xTx)−1xTy (3.9)

where β = (β0 β1)T and x = (1 x). Then the estimated linear fit function is

ŷ = m̂β̂(x) = xβ̂ = x(xTx)−1xTy (3.10)

3.6.3 Kernel Regression Model

Under the weaker assumption of IID observations (x1, y1)...(xn, yn) ∈ R2, the general non-

parametric regression model can be written as:

yi = m(x) + εi (3.11)

where m(x) = E(Y |X = x) is the conditional mean function (regression function)

This conditional mean function m(·) tells us how y and x are related “on average”, which

can be estimated using modern nonparametric technique such as kernel regression method. The

most commonly used kernel smoothing estimator for estimating m(·) is called the Nadaraya-

Watson (NW) estimator, which is given by

m̂h(x) =
∑n

i=1 K
(

x−xi
h

)
yi∑n

i=1 K
(

x−xi
h

) (3.12)
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where K(·) is the kernel function, which is usually a probability density function (PDF)14,

and h is the smoothing parameter or bandwidth, which controls the amount of smoothness in

the fitted density estimate. The nice structural form of the NW estimator can be derived from

the definition of the conditional expectation. See Sun (2006) for a detailed treatment.

3.6.4 Goodness-of-fit Test

To formally test whether the linear model is adequate enough to explain the relationship

between expected congestion revenue of FTRs and its clearing price, we use the kernel-based

nonparametric goodness-of-fit test. The null hypothesis is that the true underlying relationship

between variable x and y can be represented by function m which is characterized by parameter

β, that is,

H0 : m = mβ v.s. H1 : m 6= mβ

where mβ(x) is some β-parameterized function of x. Let m̂h(x) denote the NW estimator

of m(x), and let

m̃β̂(x) =

∑n
i=1 K

(
x−xi

h

)
mβ̂(xi)∑n

i=1 K
(

x−xi
h

) ,

denote an NW smoothing of mβ̂(x). Note that mβ̂(x) is just the parametric estimate of

function mβ(x). Hardle and Mammen (1993) propose the following test statistic:

Tn = nhd/2

∫ ∞

−∞
{m̂h(x)− m̃β̂(x)}2w(x)dx (3.13)

For simplicity, let w(x) = f(x) where f(x) is a PDF, and d = 1 as usually done in the

literature, then we can approximate Tn by:

Tn ≈ nh1/2
n∑

i=1

{m̂h(x)− m̃β̂(x)}2 (3.14)

14Technically, a kernel function K(·) should satisfy the following four conditions: (i)
∫

K(u)du = 1 (pdf), (ii)∫
uK(u)du = 0 (symmetry), (iii)

∫
u2K(u)du = σ2

K > 0 (finite variace), (iv) K(u) ≥ 0 for all u in the domain
of K (non-negativity).
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In addition to calculate the test statistic, we need to find its critical value to carry out

the test. Since the distribution of this test statistic does not fall into any easily-identifiable

parametric distributions, there are basically two approaches to obtain its critical value – either

through asymptotic normality approximation or through bootstrap simulation. Since in this

case the asymptotic approximation yields a rather inefficient speed of convergence (at the rate

of n−1/10, see Hardle and Mammen (1993) for details procedures in this approach), we opt for

using the bootstrap approach to obtain the critical value. Furthermore, since naive bootstrap

(i.e., resampling of {(x∗i , y∗i )}n
i=1 from {(xi, yi)}n

i=1) fails in regression context, we may use the

wild bootstrap originally introduced by Wu (1986).

Denote t̂∗α as the critical value, then the bootstrap assisted GOF test for H0 : m = mβ is

rejected if Tn > t̂∗α. Detailed procedures about this approach can be found in Sun (2006).

3.7 Results

In this section, we discuss the results of the MISO monthly FTR auctions using the data

from April 2005 through March 2006. Recall that we classify the FTR data into four categories,

i.e., Off-peak and non-distinct (ON), Off-peak and distinct (OD), peak and non-distinct (PN),

and peak and distinct (PD). The following results are reported for all these four FTR types.

First, we present summary statistics and stylized facts about MISO FTR auction market,

and calculate the degree to which market participants predicted congestion patterns correctly.

Second, we apply a set of econometric tools including linear regression, nonparametric kernel

regression and goodness-of-fit test to provide a descriptive analysis of the relationship between

the FTR clearing price and the associated congestion revenue in the MISO FTR market. Fi-

nally, we investigate another issue of this complicated market - whether the revenue sufficiency

condition holds, i.e., whether MISO as a central clearinghouse is systematically losing money

or earning money from the FTR auction market.
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3.7.1 Summary Statistics

For each FTR purchase in each monthly auction between April 2005 and March 2006, we

determine the unit cost of purchasing that FTR and unit revenue from holding it. Based on

the data, we calculate a set of summary statistics for all the four types of FTRs over the entire

sample months15, and report them in Table 3.6–3.9.

The upper half of Table 3.6–3.9 reports the total number of observations and the average

price and congestion revenues as well as their standard deviations. From the summary result,

it appears that both the FTR price and congestion revenue are highly volatile, which suggests

that MISO FTR market is still in its immature stage. It is worth noting that the FTR price

can be negative. This can be explained as follows. Let node A and node B be the source and

sink nodes, on which an FTR is defined. Then the agents anticipating congestion from node A

to node B (hence with positive congestion revenue) would be willing to pay a positive amount

for this FTR, while those that expect congestion in the opposite direction (hence with negative

congestion revenue) would be willing to pay a negative amount for this FTR, i.e., expecting to

get paid for purchasing this FTR.

As we examine the bottom half of Table 3.6–3.9, this relationship between the FTR price

and congestion revenue is also confirmed by the data. For example, the positive Pearson

correlation coefficient for each month indicates that F and R move together to some degree.

Specifically, the average correlation is medium high at 0.54 during the sample period. We also

calculate and report the number of correct prediction, which is defined as the data point where

the FTR price F and the congestion revenue R have the same sign. The result shows that

most market participants predict the congestion directions correctly, as the proportion of the

correct predictions in the total number of awarded FTRs is always greater than 50% and for

some months it is nearly 80%. Furthermore, we examine the number and the percentage of

the awarded FTRs for which the price paid is lower than the congestion revenue collected. We

call these FTRs “winners” in the sense that market participants can make positive profit from

purchasing these FTRs. For all four types of FTRs, the percentage of “winners” is relatively
15We do notice that the summary result for the first month (April 2005) are considerably different from those

in the later months.
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high (the mean value for all these winner percentage is 59%).

3.7.2 Linear Regression Estimation

We fit the linear regression in (3.7) for all four types of FTR data for each month. The

results are summarized in Table 3.10-3.13 and also depicted in Figure 3.7-3.10.

The description of the figures is as follows: the brown dotted lines are the zero-zero lines;

the red dashed line is the 45 degree line; the green line is the linear regression fit; and the blue

curved line is the nonparametric kernel fit.

As in the figures, the results show that every quadrant has some points, although some

have more points than others. For each month, there are some “wild” points far from the

origin, and the observations are widely spread. In spite of that, most of the points lie close to

the zero-price or zero-revenue axis, meaning that the prices and congestion revenues of most

FTRs are not extremely positive or extremely negative. This is consistent with the reality of

line physical condition that most of the time the congestion levels are moderate.

There is clear evidence that the slope of the regression line is different from one16, but is

always positive, which confirms the positive correlation between the revenue and price. For

some months, the slope is greater than one, while for other months, it is lower than one.

This means that sometimes market participants systematically lose money and sometimes

systematically earn money when they try to hedge congestion risk exposures. For most of the

months, the intercept is far away from zero.

These graphic observations can also be confirmed by the estimated results reported in

Table 3.10-3.13. Clearly the estimated regression coefficients β0 and β1 are very different from

0 and 1, and most of their associated p-values are far less than 0.01. Therefore we can reject

the null hypothesis that market participants are all risk neutral in the MISO FTR market.

Due to the complicated nature of this market, it may not be sophisticated enough to only

fit a linear regression. To explore other possible relationship between FTR clearing price and

the associated congestion revenue, we apply a nonparametric kernel regression to estimate the
16There are some cases where the slope is very close to one such as ON FTRs in Oct-05 and Mar-06.
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relationship between FTR price and the congestion revenue.

3.7.3 Kernel Regression and GOF Test

As briefly introduced in Section 3.6.3, we applied NW kernel regression to all four types

of FTR data over 12 months. The fitted kernel curves appear to be highly non-linear as they

shown in Figure 3.7-3.10. Although, due to the noise data, the kernel fit does not suggest any

plausible non-linear relationship between the FTR price and the congestion revenue, we still

can use it to construct a goodness-of-fit (GOF) test against the linear model. The bootstrap

sample size is chosen to be 1000. The GOF test result is reported in Table 3.14. The result

shows that all the tests are rejected at significance level 0.004 or better, which implies that the

underlying relationship between F and R is significantly different from the linear fit.

The linear regression results in the preceding subsection indicate that the market partic-

ipants in the MISO FTR market are not risk neutral. The goodness of fit test shows that

the linear fit may not be proper for the data observed. Naturally, we are motivated to ask

if the market participants exhibit other risk preferences such as risk aversion. As shown ear-

lier, by Jensen’s inequality we know that agent’s willingness to pay (F ) should be larger than

the expected congestion revenue from holding the FTR (ER) under risk-aversion assumption,

F > ER. However, from the estimated kernel regression functions, we observe that many

fitted kernel curves are above the 45 degree line, which means that the risk “premium” is

negative. Therefore, using the kernel fits as exploratory methods to examine the validity of

the risk-aversion assumption, we may conclude that the market participants may not be risk

averse either.

3.7.4 Revenue Sufficiency Analysis

Another interesting aspect of MISO FTR market is to examine to what degree this market

observes revenue sufficiency. In other words, we would like to calculate the monthly total net

revenue for each type of FTRs, where net revenue for each individual FTR contract is defined

as the difference between the FTR clearing price and the associated revenue multiplied by the
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number of contracts, and the monthly total net revenue is the sum of all net revenue for each

individual FTR contracts at each month. If the monthly total net revenue is positive or close

to zero, then we can say the MISO FTR market exhibits revenue sufficiency. If on the other

hand, the monthly total net revenue is negative, then the MISO FTR market does not have

revenue sufficiency.

Denote the monthly total net revenue for the ON FTR as NetRev.ONt and denote the

number of contracts for FTR at month t and effective between node m and n as Qm,n
t , then

we have the following expression for NetRev.ONt.

NetRev.ONt =
∑

m,n∈Ω

(Fm,n
t −Rm,n

t )Qm,n
t (3.15)

Similar calculations apply to other three types of FTRs for all month of data. The results

are reported in Table 3.15 and Figure 3.11. The results show that for all four types of FTRs and

for all months except two the total net revenue is largely negative, indicating that the MISO

is systematically losing money in the FTR market. The monthly pattern for two offpeak (ON

and OD) FTRs are very similar with each other. There is a large negative dip in the month of

August 2006 and a small negative dip in the month of December 2006. Likewise the monthly

pattern for two peak (PN and PD) FTRs are very similar with each other too. There is a

small negative dip in the month of September 2006 and a large negative dip in the month of

December 2006.

This result on the other hand suggests that the market participants on average might

exhibit some degree of risk affection by paying less than the expected congestion revenue to

purchase FTRs. However since the calculated total net revenue is an aggregated result, more

data are needed to reach a more definite conclusion about market participant’s risk preferences

in the FTR market.

3.8 Conclusions

Some empirical work has been conducted with the existing FTR markets, such as the

NYISO TCC market, but none has been done to empirically investigate the newly established
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MISO FTR market. In this paper, we examine the performance of this market, using publicly

available data on the FTR clearing prices and the associated congestion revenues in the monthly

auctions between April 2005 and March 2006. Our study provides some empirical evidence of

how this young market has been performing so far. We find that the new market has something

in common with the mature ones and also possesses some unique features. The features that

the MISO FTR market and NYISO TCC market share are listed as follows:

1. The correlation between FTR clearing prices and congestion revenues is positive for each

month.

2. For each month, most of the FTR holders make correct predictions about the direction

of congestions, that is, the price and revenue have the same sign.

3. A considerable portion of FTR holders make money by purchasing the FTRs, that is,

the clearing price is lower than the revenue collected.

At the same time, the MISO FTR market has some stylized facts that are not seen in the

more mature markets:

1. The number of distinct and non-distinct awards is different for different months, but

increases over the 12 months on the whole.

2. The FTR market is quite thin, in the sense that there is only one buyer for most FTRs;

But the difference between the number of non-distinct FTR awards and the number of

distinct ones increases, meaning that this market gets thicker over time.

3. The average FTR auction clearing prices and revenues are very volatile across all months.

4. The correlation between FTR clearing prices and congestion revenues has a slightly

increasing trend over the 12 months.

5. The results for the first month (April 2005) are very different from later months.

Compared with the first three common features, these five unique characteristics are indi-

cators of this new market, but they could also imply that this market is getting more mature
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as time goes on. If we had a longer sample period, we might be able to see more clearly the

progressing of this market and differentiate between the trend and the seasonal component.

This is a task to be accomplished in the future.

As to the performance of the MISO FTR market, we find that the market works well in

terms of some measures such as the proportion of correct predictions. The results from the

simple linear regression suggest that the market participants in this market are not risk neutral.

To further explore the relationship between the FTR clearing price the congestion revenue, we

apply the nonparametric kernel regression method. The kernel fit results suggest that the

MISO FTR market might not be risk averse either. Moreover we carried out a goodness-of-

fit test against the linear fit. The test results indicate that comparing with the kernel fit,

the linear fit is not adequate enough to capture the underlying structure of the relationship

between the FTR clearing price and the congestion revenue in this market. Last but not

the least, we calculate the monthly total net revenue of all four types of FTRs to evaluate

the revenue sufficiency condition in the FTR market. The results show that the MISO is

systematically losing money in the FTR market, which on the other hand suggests that the

market participants might to some degree exhibit risk affection behavior.

Due to lack of more detailed data, such as the bids and offers data submitted by the

market participants, we cannot make strong conclusion about the risk preference exhibited

in this market and other more detailed performance analyses in the market. This may be

accomplished in the future when more data become available.

The contributions of this paper are in two-folds. First, this paper explores the newly formed

MISO FTR market using empirical methods. With the available data, we summarize the

stylized facts about MISO FTR market and apply various econometric methods to characterize

the performance of the FTR market. Second, in this paper we conduct theoretic analysis of the

hedging role of FTRs and provide reference for further empirical analysis once we have access

to more data. For example, we point out the need to know if a power transaction is bilateral

or via a pool when examining the risk coverage provided by FTRs. Since the available data

do not provide such information, we do not differentiate between these two types of power
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transactions in our study. We also mention that one should consider the FTR purchase in the

context of the more fundamental wholesale electric power market, but we are not able to do

this in the paper due again to the data availability. To fully understand the underlying data

generating process for the MISO FTR market, both FTRs and power transactions need to be

considered simultaneously.

There can be several extensions to our work. One is to compare the MISO FTR market

with the more mature markets such as New England and New York FTR markets to see exactly

what the difference is and why. With data of a longer sample period, we can carry out time

series analysis to further investigate the development of the young market and to see if it will

be similar to those well established markets. Another extension might be to analyze FTR

auctions together with the electricity transactions and individual behaviors, so as to get an

integrated view of how FTRs are used to reduce the risk associated with the agent’s profit.

This is quite challenging and requires data not only from the FTR and energy market, but

also from individual market participants. This may be accomplished by either human-subject

experiments or agent-based computational simulations. For the agent-based computational

approach, see Sun and Tesfatsion (2006) for an agent-based simulation study of wholesale

power market design tests.
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3.10 Appendix

Table 3.5 MISO monthly FTR allocation and auction timeline: August
2005

Start Datea Stop Date Activitiesb

Aug. 12 MISO –Post auction model
Aug. 15 MPc – Credit deadline for Sept. auction

Aug. 15 Aug. 16 MP – Allocation nominations may be submitted
for Sept. monthly FTR allocation

Aug. 19 MISO – Post Sept. monthly FTR allocation results
Aug. 22 Aug. 23 MP – Bid/offers may be submitted to buy and sell

FTRs for Sept. monthly FTR auction
Aug. 26 MISO – Post Sept. monthly FTR auction results

aWe only list the timeline for August since all other months are very similar to August except the exact
start and stop dates are slightly different across each month.

bSource: MISO public website http://www.midwestiso.org
cMP: Market participants



www.manaraa.com

104

Table 3.6 Summary statistics for off-peak and non-distinct (ON) FTRs
(Apr05 – Mar06)

Month Num Obs Avg Price Std Price Avg Rev Std Rev
Apr-05 88 -903.05 6310.04 53.04 172.15
May-05 174 -361.41 644.51 -32.57 1193.91
Jun-05 140 173.88 646.18 1080.48 1773.36
Jul-05 379 332.05 854.44 237.68 1110.77

Aug-05 547 134.15 748.91 1521.22 3187.88
Sep-05 336 235.65 868.86 2086.30 3328.20
Oct-05 461 26.08 467.24 467.96 1434.43
Nov-05 637 242.57 1518.96 769.04 2029.69
Dec-05 622 487.53 950.72 2030.69 3286.07
Jan-06 607 451.59 1233.12 256.18 853.17
Feb-06 857 463.42 1148.30 396.64 724.79
Mar-06 855 -14.18 948.73 -48.93 1411.83

Month Correlation CorrectPred %CorrectPred Winners %Winners
Apr-05 0.30 48 0.55 35 0.40
May-05 0.79 151 0.87 137 0.79
Jun-05 0.67 99 0.71 93 0.66
Jul-05 0.54 250 0.66 164 0.43

Aug-05 0.64 318 0.58 418 0.76
Sep-05 0.87 230 0.68 276 0.82
Oct-05 0.31 271 0.59 310 0.67
Nov-05 0.25 395 0.62 413 0.65
Dec-05 0.44 477 0.77 463 0.74
Jan-06 0.80 489 0.81 224 0.37
Feb-06 0.59 649 0.76 408 0.48
Mar-06 0.74 639 0.75 390 0.46
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Table 3.7 Summary statistics for off-peak and distinct (OD) FTRs (Apr05
– Mar06)

Month Num Obs Avg Price Std Price Avg Rev Std Rev
Apr-05 86 -929.43 6381.41 54.34 173.57
May-05 121 -103.08 607.90 301.77 1295.94
Jun-05 139 173.84 648.52 1078.53 1779.62
Jul-05 365 342.02 868.58 213.56 1108.39

Aug-05 502 136.59 768.43 1513.29 3171.41
Sep-05 310 251.33 902.16 2115.19 3438.81
Oct-05 428 20.88 482.21 451.04 1421.70
Nov-05 587 268.47 1575.06 799.56 2055.52
Dec-05 523 480.56 948.87 1799.63 2936.88
Jan-06 505 413.39 1302.46 219.86 897.12
Feb-06 746 515.70 1198.22 407.07 718.46
Mar-06 767 -48.20 972.58 -75.59 1470.36

Month Correlation CorrectPred %CorrectPred Winners %Winners
Apr-05 0.30 45 0.52 36 0.42
May-05 0.75 98 0.81 85 0.70
Jun-05 0.67 98 0.71 92 0.66
Jul-05 0.55 241 0.66 151 0.41

Aug-05 0.64 294 0.59 379 0.75
Sep-05 0.88 214 0.69 254 0.82
Oct-05 0.32 249 0.58 285 0.67
Nov-05 0.24 356 0.61 373 0.64
Dec-05 0.32 395 0.76 386 0.74
Jan-06 0.81 401 0.79 178 0.35
Feb-06 0.60 573 0.77 329 0.44
Mar-06 0.76 592 0.77 373 0.49
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Table 3.8 Summary statistics for peak and non-distinct (PN) FTRs (Apr05
– Mar06)

Month Num Obs Avg Price Std Price Avg Rev Std Rev
Apr-05 79 -6461.63 15306.82 -45.95 523.53
May-05 137 -173.27 1596.70 135.89 1147.91
Jun-05 213 1.400 962.10 889.56 1579.37
Jul-05 511 79.65 673.75 -73.46 1165.19

Aug-05 515 78.50 659.53 599.39 1495.04
Sep-05 575 -200.42 1356.63 -2390.49 10241.13
Oct-05 550 78.56 804.33 1104.68 3769.84
Nov-05 932 -22.37 1814.00 585.87 3397.96
Dec-05 1085 533.19 1424.65 2173.83 4200.80
Jan-06 903 909.33 2018.14 474.55 985.61
Feb-06 1361 602.43 1111.91 253.83 1355.96
Mar-06 1133 19.79 1128.67 90.65 1367.92

Month Correlation CorrectPred %CorrectPred Winners %Winners
Apr-05 0.08 46 0.58 53 0.67
May-05 0.84 101 0.74 82 0.60
Jun-05 0.55 130 0.61 159 0.75
Jul-05 0.39 383 0.75 242 0.47

Aug-05 0.32 344 0.67 349 0.68
Sep-05 0.86 444 0.77 285 0.50
Oct-05 0.45 369 0.67 373 0.68
Nov-05 0.37 633 0.68 569 0.61
Dec-05 0.41 766 0.71 821 0.76
Jan-06 0.65 703 0.78 312 0.35
Feb-06 0.43 892 0.66 662 0.49
Mar-06 0.61 795 0.70 610 0.54
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Table 3.9 Summary statistics for peak and distinct (PD) FTRs (Apr05 –
Mar06)

Month Num Obs Avg Price Std Price Avg Rev Std Rev
Apr-05 78 -6313.36 15348.69 -36.13 519.53
May-05 134 -179.69 1612.36 126.22 1152.99
Jun-05 210 -0.93 968.46 900.61 1587.58
Jul-05 498 78.48 679.72 -85.65 1174.92

Aug-05 487 77.51 673.89 592.34 1481.90
Sep-05 560 -210.86 1368.89 -2511.67 10345.57
Oct-05 504 77.37 836.07 1086.22 3836.27
Nov-05 861 -38.31 1881.22 567.92 3403.62
Dec-05 923 538.81 1432.51 2016.86 4121.66
Jan-06 773 960.31 2128.17 486.67 1023.50
Feb-06 1359 602.29 1112.50 251.64 1355.52
Mar-06 994 -12.86 1170.65 63.21 1410.34

Month Correlation CorrectPred %CorrectPred Winners %Winners
Apr-05 0.06 45 0.58 52 0.67
May-05 0.84 97 0.72 79 0.59
Jun-05 0.55 128 0.61 158 0.75
Jul-05 0.39 373 0.75 232 0.47

Aug-05 0.33 327 0.67 331 0.68
Sep-05 0.87 434 0.78 274 0.49
Oct-05 0.45 335 0.66 343 0.68
Nov-05 0.37 581 0.67 530 0.62
Dec-05 0.37 679 0.74 673 0.73
Jan-06 0.65 597 0.77 268 0.35
Feb-06 0.43 890 0.65 660 0.49
Mar-06 0.63 708 0.71 541 0.54
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Table 3.10 Linear regression results for off-peak and non-distinct (ON)
FTRs (Apr05 – Mar06)

Month Intercept p.value Price p.value resid.se d.f. r.sq adj.r.sq f.stat
Apr-05 60.32 0.00 0.01 0.01 165.40 86 0.09 0.08 8.24
May-05 498.75 0.00 1.47 0.00 728.50 172 0.63 0.63 292.65
Jun-05 760.35 0.00 1.84 0.00 1319.80 138 0.45 0.45 112.95
Jul-05 5.90 0.91 0.70 0.00 938.32 377 0.29 0.29 152.71

Aug-05 1158.01 0.00 2.71 0.00 2462.17 545 0.40 0.40 370.29
Sep-05 1302.03 0.00 3.33 0.00 1650.33 334 0.75 0.75 1028.44
Oct-05 443.01 0.00 0.96 0.00 1364.45 459 0.10 0.10 49.39
Nov-05 688.22 0.00 0.33 0.00 1967.13 635 0.06 0.06 42.10
Dec-05 1286.80 0.00 1.53 0.00 2950.91 620 0.19 0.19 150.07
Jan-06 5.13 0.82 0.56 0.00 508.31 605 0.65 0.65 1102.22
Feb-06 224.92 0.00 0.37 0.00 587.08 855 0.34 0.34 449.65
Mar-06 -33.33 0.31 1.10 0.00 951.01 853 0.55 0.55 1029.13

Table 3.11 Linear regression results for off-peak and distinct (OD) FTRs
(Apr05 – Mar06)

Month Intercept p.value Price p.value resid.se d.f. r.sq adj.r.sq f.stat
Apr-05 61.88 0.00 0.01 0.01 166.67 84 0.09 0.08 8.19
May-05 465.74 0.00 1.59 0.00 866.36 119 0.56 0.55 149.50
Jun-05 758.46 0.00 1.84 0.00 1324.41 137 0.45 0.45 112.17
Jul-05 -27.19 0.60 0.70 0.00 925.79 363 0.30 0.30 158.75

Aug-05 1152.87 0.00 2.64 0.00 2441.04 500 0.41 0.41 345.65
Sep-05 1276.36 0.00 3.34 0.00 1663.83 308 0.77 0.77 1011.94
Oct-05 431.29 0.00 0.95 0.00 1348.16 426 0.10 0.10 48.86
Nov-05 714.96 0.00 0.32 0.00 1996.40 585 0.06 0.06 36.22
Dec-05 1320.80 0.00 1.00 0.00 2783.20 521 0.10 0.10 60.24
Jan-06 -10.64 0.67 0.56 0.00 527.26 503 0.66 0.65 956.11
Feb-06 222.08 0.00 0.36 0.00 576.08 744 0.36 0.36 414.74
Mar-06 -20.39 0.56 1.15 0.00 960.54 765 0.57 0.57 1029.91
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Table 3.12 Linear regression results for peak and non-distinct (PN) FTRs
(Apr05 – Mar06)

Month Intercept p.value Price p.value resid.se d.f. r.sq adj.r.sq f.stat
Apr-05 -28.92 0.65 0.00 0.50 525.35 77 0.01 -0.01 0.46
May-05 240.35 0.00 0.60 0.00 627.62 135 0.70 0.70 319.94
Jun-05 888.31 0.00 0.90 0.00 1326.05 211 0.30 0.30 89.74
Jul-05 -127.19 0.01 0.67 0.00 1073.96 509 0.15 0.15 91.33

Aug-05 543.26 0.00 0.72 0.00 1420.11 513 0.10 0.10 56.67
Sep-05 -1084.22 0.00 6.52 0.00 5172.01 573 0.75 0.75 1677.55
Oct-05 939.23 0.00 2.11 0.00 3370.97 548 0.20 0.20 138.61
Nov-05 601.31 0.00 0.69 0.00 3160.57 930 0.14 0.13 146.11
Dec-05 1521.93 0.00 1.22 0.00 3824.44 1083 0.17 0.17 224.85
Jan-06 185.85 0.00 0.32 0.00 749.34 901 0.42 0.42 659.49
Feb-06 -60.64 0.11 0.52 0.00 1225.91 1359 0.18 0.18 304.87
Mar-06 75.95 0.02 0.74 0.00 1081.63 1131 0.38 0.37 679.57

Table 3.13 Linear regression results for peak and distinct (PD) FTRs
(Apr05 – Mar06)

Month Intercept p.value Price p.value resid.se d.f. r.sq adj.r.sq f.stat
Apr-05 -22.48 0.73 0.00 0.58 521.87 76 0.00 -0.01 0.31
May-05 234.26 0.00 0.60 0.00 626.52 132 0.71 0.70 318.43
Jun-05 901.45 0.00 0.90 0.00 1330.22 208 0.30 0.30 89.69
Jul-05 -138.34 0.00 0.67 0.00 1083.74 496 0.15 0.15 88.16

Aug-05 536.58 0.00 0.72 0.00 1401.80 485 0.11 0.11 58.13
Sep-05 -1130.09 0.00 6.55 0.00 5161.07 558 0.75 0.75 1688.16
Oct-05 926.62 0.00 2.06 0.00 3430.12 502 0.20 0.20 127.17
Nov-05 593.33 0.00 0.66 0.00 3168.56 859 0.13 0.13 133.33
Dec-05 1444.37 0.00 1.06 0.00 3832.41 921 0.14 0.14 145.43
Jan-06 187.79 0.00 0.31 0.00 780.76 771 0.42 0.42 555.63
Feb-06 -62.51 0.10 0.52 0.00 1225.49 1357 0.18 0.18 304.47
Mar-06 72.96 0.04 0.76 0.00 1096.48 992 0.40 0.40 650.84
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Figure 3.7 The linear and kernel regression for off-peak and non-distinct
(ON) FTRs



www.manaraa.com

111

Figure 3.8 The linear and kernel regression for off-peak and distinct (OD)
FTRs
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Figure 3.9 The linear and kernel regression for peak and non-distinct (PN)
FTRs
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Figure 3.10 The linear and kernel regression for peak and distinct (PD)
FTRs
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Table 3.14 The goodness-of-fit test results for all four types of FTRs
(Apr05 – Mar06)

Month p-value.ON p-value.OD p-value.PN p-value.PD
Apr-05 0.000 0.000 0.000 0.000
May-05 0.000 0.000 0.001 0.000
Jun-05 0.000 0.000 0.000 0.000
Jul-05 0.004 0.004 0.000 0.000
Aug-05 0.000 0.000 0.001 0.001
Sep-05 0.000 0.000 0.000 0.000
Oct-05 0.000 0.000 0.000 0.000
Nov-05 0.000 0.000 0.000 0.000
Dec-05 0.000 0.000 0.000 0.000
Jan-06 0.000 0.000 0.000 0.001
Feb-06 0.000 0.000 0.000 0.000
Mar-06 0.000 0.000 0.000 0.000

Table 3.15 The monthly total net revenue for all four types of FTRs (Apr05
– Mar06)

Month NetRev.ONa NetRev.OD NetRev.PN NetRev.PD
Apr-05 97.607 91.594 1136.644 1136.644
May-05 -608.242 -608.354 -173.966 -164.165
Jun-05 -2196.301 -2196.301 -2518.669 -2518.669
Jul-05 -690.774 -709.981 -1106.602 -1104.469

Aug-05 -16146.065 -16146.065 -2733.898 -2717.289
Sep-05 -4825.486 -4825.486 -7294.692 -7304.574
Oct-05 -2385.498 -2385.498 -5819.088 -5775.968
Nov-05 -5165.214 -5165.214 -6397.217 -6398.028
Dec-05 -8194.178 -8203.520 -12282.049 -12282.049
Jan-06 457.857 457.857 530.545 518.906
Feb-06 -1318.938 -1320.908 -1131.792 -1131.792
Mar-06 -1596.208 -1598.376 -1649.562 -1652.240

aAll values of monthly total net revenue have been divided by 1000.



www.manaraa.com

115

Figure 3.11 The monthly total net revenue for all four types of FTRs
(Apr05 – Mar06), Note: all values of monthly total net revenue
have been divided by 1000.
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CHAPTER 4. DYNAMIC TESTING OF WHOLESALE POWER

MARKET DESIGNS: AN OPEN-SOURCE AGENT-BASED

FRAMEWORK

4.1 Abstract

In April 2003 the U.S. Federal Energy Regulatory Commission proposed a complicated

market design – the Wholesale Power Market Platform (WPMP) – for common adoption by

all U.S. wholesale power markets. Versions of the WPMP have been implemented in New

England, New York, the mid-Atlantic states, the Midwest, and the Southwest, and adopted

for implementation in California. Strong opposition to the WPMP persists among some in-

dustry stakeholders, however, due largely to a perceived lack of adequate performance testing.

This study reports on the model development and open-source implementation (in Java) of a

computational wholesale power market organized in accordance with core WPMP features and

operating over a realistically rendered transmission grid. The traders within this market model

are strategic profit-seeking agents whose learning behaviors are based on data from human-

subject experiments. Our key experimental focus is the complex interplay among structural

conditions, market protocols, and learning behaviors in relation to short-term and longer-term

market performance. Findings for a dynamic 5-node transmission grid test case are presented

for concrete illustration.

Keywords: Wholesale power market restructuring, Empirical input validation, Market design,

Behavioral economics, Learning, Market power, Agent-based modeling, AMES wholesale power

market framework, Java, RepastJ

JEL Codes: L1, D8, L9, C6
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4.2 Introduction

The meltdown in the restructured California wholesale power market in the summer of 2000 has

shown what can happen when a poorly designed market mechanism is implemented without

proper testing. The California crisis is believed to have resulted in part from strategic behaviors

encouraged by inappropriate market design features (Borenstein, 2002). Following the Cali-

fornia crisis, many energy researchers have eloquently argued the need to combine structural

understanding with economic analysis of incentives in order to develop wholesale power market

designs with good real-world performance characteristics; see, for example, Amin (2004).

In April 2003 the U.S. Federal Energy Regulatory Commission proposed the Wholesale

Power Market Platform (WPMP) as a template for all U.S. wholesale power markets (FERC,

2003). This design recommends the operation of wholesale power markets by Independent

System Operators (ISOs) or Regional Transmission Organizations (RTOs) using locational

marginal pricing to price energy by the location of its injection into or withdrawal from the

transmission grid. Versions of this design have been implemented in New England (ISO-NE),

New York (NYISO), the mid-Atlantic states (PJM), the Midwest (MISO), and the Southwest

(SPP), and adopted for implementation in California (CAISO). Joskow (2006, p. 6) reports

that ISO/RTO operated energy regions now include over 50% of the generating capacity in

the U.S.; see Figure 4.1.

The complexity of the WPMP market design has made it extremely difficult to undertake

economic and physical reliability studies of the design using standard statistical and analytical

tools. Strong opposition to the market design thus persists among some industry stakeholders

due in part to a perceived lack of sufficient performance testing.

In recent years, however, powerful new agent-based computational tools have been devel-

oped to analyze this degree of complexity. A variety of commercial agent-based frameworks are

now available for the study of restructured electricity markets; see, for example, the EMCAS

framework developed by researchers at the Argonne National Laboratory (Conzelmann et al.,

2004). In addition, researchers such as Bower and Bunn (2001), Nicolaisen et al. (2001), Veit

et al. (2006), and Widergren et al. (2004) have used agent-based models to study important
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Figure 4.1 Existing and Proposed ISO/RTO-Operated U.S. Wholesale
Power Markets

aspects of restructured electricity markets.1

In a preliminary study (Koesrindartoto et al., 2005), we examined the feasibility and po-

tential fruitfulness of Agent-based Computational Economics (ACE) specifically for the study

of the WPMP market design. ACE is the computational study of economic processes modeled

as dynamic systems of interacting agents.2

Building on this prior work, the present study reports on the development and implemen-

tation of an ACE framework for testing the dynamic efficiency and reliability of the WPMP

market design. This framework – referred to as AMES (Agent-based M odeling of E lectricity

Systems) – models strategic traders interacting over time in a wholesale power market that

is organized in accordance with core WPMP features and that operates over a realistically

rendered transmission grid. To our knowledge, AMES is the first non-commercial open-source
1See Tesfatsion (2006a) for extensive annotated pointers to agent-based electricity research.
2See Axelrod and Tesfatsion (2006), Tesfatsion (2006b), and Tesfatsion and Judd (2006) for extensive intro-

ductory materials on ACE.
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framework permitting the computational study of the WPMP design.

To help ensure empirical input validity, the AMES framework has been developed by means

of an iterative participatory modeling approach.3 Specifically, we are engaging with industry

participants and policy makers in an ongoing collaborative learning process involving four

repeated stages of analysis: fieldwork and data collection; scenario discussion and role-playing

games; agent-based model development; and intensive computational experiments. We are

relying heavily on business practices from two adopters of the WPMP design (New England and

the Midwest) for our implementation of market structure, market architecture, and dispatch

and pricing solutions. We have also incorporated reinforcement learning representations for the

electricity traders that are based on findings from human-subject multi-agent game experiments

conducted by Roth and Erev (1995).4

We are currently using the AMES framework to investigate the intermediate-term perfor-

mance of wholesale power markets operating under the WPMP market design. In particular,

we are exploring the extent to which this design is capable of supporting the efficient, prof-

itable, and sustainable operation over time of existing generation and transmission facilities,

despite possible attempts by some market participants to gain individual advantage through

strategic pricing, capacity withholding, and induced transmission congestion.

To illustrate concretely the potential usefulness of the AMES framework for this purpose,

experimental findings are reported below for a dynamic extension of a static five-node trans-

mission grid test case used extensively for training purposes by the ISO-NE and PJM. In the

static training case, the generators are assumed to report their true cost and production capac-

ity attributes to the ISO; the possibility that generators might engage in strategic reporting

behavior is not considered. In contrast, the AMES generators use reinforcement learning to

decide the exact nature of the supply offers (marginal cost functions and production inter-

vals) that they daily report to the AMES ISO for use in the WPMP day-ahead market. We
3See Barreteau (2003) for a fuller discussion of iterative participatory modeling, also called companion mod-

eling . For more general materials on empirical validation methods for agent-based computational models, see
Fagiolo et al. (2006) and Tesfatsion (2006c).

4Real-world market traders are understandably reluctant to discuss with us the precise manner in which they
determine their supply offers and demand bids, so indirect identification methods must be used.
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show that all of the AMES generators learn over time to implicitly collude on the reporting of

higher-than-true marginal costs, thus considerably raising total variable costs of operation at

the ISO-determined “optimal” solutions.

Our longer-run goal for AMES is a framework that rings true to industry participants and

policy makers and that can be used as a research and training tool. Specifically targeted

framework features include:

• Operational validity (structure, architecture, and behavioral dispositions);

• Permits dynamic testing with learning traders;

• Permits intensive sensitivity experiments;

• Open source (full access to implementation);

• Easy modification (extensible/modular architecture).

We envision academic researchers and teachers using this framework to increase their qualita-

tive understanding of the dynamic operation of restructured wholesale power markets. Industry

participants should be able to use the framework to familiarize themselves with market rules

and to test business strategies. And policy makers should find the framework useful for con-

ducting intensive experiments to explore the performance of actual or proposed market designs

from a social welfare viewpoint. In particular, does a design encourage the efficient and reli-

able operation of existing generation and transmission capacity in the short term, and does it

provide appropriate incentives for investment in new generation and new transmission capacity

in the longer term?

An overview of the AMES wholesale power market framework is presented in Section 4.3,

and detailed configuration settings for the AMES transmission grid, energy traders, and ISO

are presented in Section 4.4. Experimental findings for a dynamic five-node transmission grid

test case are presented in Section 4.5 making use of the configuration settings from Section 4.4.

Concluding remarks are given in Section 5.10. Notes on the construction of “action domains”

(supply offer choice sets) for the AMES generators are provided in an appendix.
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4.3 Overview of the AMES Framework

The AMES wholesale power market framework is programmed in Java using RepastJ, a

Java-based toolkit designed specifically for agent-based modeling in the social sciences.5 The

framework is modular, extensible, and open source in order to provide a useful foundation for

further electricity research.6

The AMES framework currently incorporates in stylized form several core elements of the

WPMP market design as implemented by the New England Independent System Operator

(ISO-NE) and the Midwest Independent System Operator (MISO), respectively. By adhering

closely to the architecture of these regional energy markets, we have been able to take advantage

of the business practice manuals, training guides, and reports publicly released by the ISO-NE

(2006) and the MISO (2006) for use by their market participants. These publications provide

a wealth of specific implementation details missing from the more abstract WPMP template.

As depicted in Figures 4.2 through 4.4, the core elements of the WPMP market design that

have been incorporated into the AMES framework to date are as follows:

• The AMES wholesale power market operates over an AC transmission grid for DMax

successive days, with each day D consisting of 24 successive hours H = 00, 01, . . . , 23.

• The AMES wholesale power market includes an Independent System Operator (ISO) and

a collection of energy traders consisting of Load-Serving Entities (LSEs) and Generators

distributed across the nodes of the transmission grid.7

5See Tesfatsion (2006d) for resources related to the agent-based toolkit RepastJ. Agent-based researchers are
increasingly making use of powerful object-oriented programming (OOP) languages such as Java, C++, or C#
either directly or through some form of agent-based toolkit. Weisfeld (2003) provides an excellent introduction
to OOP. For a general annotated listing of OOP software and toolkits suitable for agent-based modeling, see
Tesfatsion (2006e).

6In particular, the goal of the larger NSF project encompassing the development of the AMES framework
(McCalley et al., 2005) is to explore ways of achieving a more effectively integrated U.S. energy transportation
network encompassing electricity, gas, coal, and water subsectors. The longer-term plan is to incrementally
extend the AMES framework to include consideration of these related energy subsectors.

7An Independent System Operator (ISO) is an organization charged with the primary responsibility of main-
taining the security of a power system and often with system operation responsibilities as well. The ISO is
independent to the extent that it does not have a conflict of interest in carrying out these responsibilities, such
as an ownership stake in generation or transmission facilities within the power system. A Load Serving Entity
(LSE) is an electric utility, transmitting utility, or Federal power marketing agency that has an obligation under
Federal, State, or local law, or under long-term contracts, to provide electrical power to end-use (residential
or commercial) consumers or to other LSEs with end-use consumers. An LSE aggregates individual end-use
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• The AMES ISO undertakes the daily operation of the transmission grid within a two-

settlement system consisting of a Real-Time Market and a Day-Ahead Market, each

separately settled by means of locational marginal pricing .8

• During the afternoon of each day D the AMES ISO determines power commitments and

locational marginal prices (LMPs)9 for the Day-Ahead Market for day D+1 based on

Generator supply offers and LSE demand bids (forward financial contracting) submitted

during hours 00− 11 of day D.

• At the end of each day D the AMES ISO produces and posts a day D+1 commitment

schedule for Generators and LSEs and settles these financially binding contracts on the

basis of day D+1 LMPs.

• Any differences that arise during day D+1 between real-time conditions and the day-

ahead financial contracts settled at the end of day D must be settled in the Real-Time

Market for day D+1 at real-time LMPs for day D+1 .

• Transmission grid congestion in the Day-Ahead Market is managed via the inclusion of

congestion components in LMPs.

Five additional elements that will subsequently be incorporated into AMES to reflect more

fully the dynamic operational capabilities of the WPMP market design are: (a) market power

mitigation measures; (b) bilateral trading , which permits longer-term contracting; (c) a market

for financial transmission rights10 to permit AMES traders to hedge against transmission

congestion costs arising in the Day-Ahead Market; (d) security constraints incorporated into

the DC OPF problems solved by the AMES ISO for the Real-Time Market and Day-Ahead

consumer demand into “load blocks” for bulk buying at the wholesale level. A Generator is a unit that produces
and sells electrical power in bulk at the wholesale level. A node is a point on the transmission grid where power
is injected or withdrawn.

8Locational marginal pricing is the pricing of electrical power according to the location of its withdrawal
from, or injection into, a transmission grid.

9A locational marginal price (LMP) at any particular node is the least cost of meeting demand at that node
for one additional unit of power, i.e. for one additional megawatt (MW).

10A financial transmission right (FTR) purchased on a transmission line from node A to node B entitles the
holder to a compensation if the LMP at node B exceeds the LMP at node A, and obligates the holder to make
a payment if the LMP at node A exceeds the LMP at node B. See Sun (2005).
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Figure 4.2 Illustrative 5-Node Transmission Grid

Market as a hedge against system disturbances; and (e) a (Resource Offer) Re-Bid Period11

during each day D as part of a resource adequacy assessment undertaken by the AMES ISO

to help ensure that forecasted loads and reserve requirements are always met. Figures 4.5 and

4.6 schematically depict the architecture and dynamic flow of this extended AMES framework.

As explained more carefully in Section 4.4.5 below, the AMES ISO determines hourly power

commitments/dispatch levels and LMPs for the Day-Ahead Market and Real-Time Market

by solving DC Optimal Power Flow (OPF) problems that approximate underlying AC OPF

problems. To handle these aspects, we have developed an accurate and efficient strictly convex

quadratic programming (SCQP) solver module, QuadProgJ , wrapped in an outer DC OPF

data conversion shell, DCOPFJ (Sun and Tesfatsion, 2006). The AMES ISO solves its DC

OPF problems by invoking QuadProgJ through DCOPFJ.

As detailed in Section 4.4.6 below, trader learning is implemented in the AMES framework
11Here we follow the MISO market architecture and terminology. The ISO-NE implements a similar design

feature during each day D called the “(Real-Time Energy Market) Supply Re-Offer Period.”
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Figure 4.3 AMES Core Features

by a reinforcement learning module, JReLM , developed by Gieseler (2005). JReLM can imple-

ment a variety of different reinforcement learning methods, permitting flexible representation

of trader learning within this family of methods. In later extensions of AMES, other possible

trader learning methods (e.g. social mimicry and belief learning) will also be considered.

The QuadProgJ/DCOPFJ and JReLM modules for ISO grid operation and trader learning

constitute the core components supporting the implementation of the AMES wholesale power

market framework. This implementation is schematically depicted in Figure 4.7.

4.4 Configuration of the AMES Framework

4.4.1 Overview

This section provides detailed configuration information for the AMES wholesale power

market framework as currently implemented. All subsequently reported experiments make use

of these configurations.
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Figure 4.4 Activities of the AMES ISO During a Typical Day D

For later ease of reference, the admissible exogenous variables for the AMES framework

are depicted and defined in Table 5.1 and the endogenous variables are depicted and defined in

Table 5.2.12 These variable depictions and definitions will be used throughout the remainder

of this study.

4.4.2 Structural Configuration of the AMES Transmission Grid

The AMES transmission grid is an alternating current (AC) grid modeled as a balanced three-

phase network with N ≥ 1 branches and K ≥ 2 nodes. The reactance on each branch is

assumed to be a total branch reactance (rather than a per mile reactance), meaning that the

branch length is already taken into account. All transformer phase angle shifts are assumed

to be zero, all transformer tap ratios are assumed to be 1, all line-charging capacitances are

assumed to be 0, and the temperature is assumed to remain constant over time.
12Only persistent variables appear in these tables. Locally scoped variables temporarily introduced to carry

out method implementations are not included.
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Figure 4.5 AMES Architecture (Agent Hierarchy)

The AMES transmission grid is assumed to be connected in the sense that it has no isolated

components; each pair of nodes k and m is connected by a linked branch path consisting of one

or more branches. If two nodes are in direct connection with each other, it is assumed to be

through at most one branch, i.e., branch groups are not explicitly considered. However, com-

plete connectivity is not assumed. That is, node pairs are not necessarily in direct connection

with each other through a single branch.

For per unit normalization in DC OPF implementations, it is conventional to specify base

value settings for apparent power (in megavoltamperes MVA) and voltage (in kilovolts kV).

For the AMES transmission grid, the base apparent power, denoted by So, is assumed to

be measured in three-phase MVAs, and the base voltage, denoted by Vo, is assumed to be

measured in line-to-line kVs.

It is also assumed that Kirchoff’s Current Law (KCL) governing current flows in electrical

networks holds for the AMES transmission grid for each hour of operation. As detailed in
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Figure 4.6 AMES Dynamic Market Activities: Global View

Kirschen and Strbac (2004, Sec. 6.2.2.1), KCL implies that real and reactive power must each

be in balance at each node. Thus, real power must also be in balance across the entire grid, in

the sense that aggregate real power withdrawal plus aggregate transmission losses must equal

aggregate real power injection.

In wholesale power markets restructured in accordance with the WPMP market design,

the transmission grid is overlaid with a commercial network consisting of “pricing locations”

for the purchase and sale of electric power. A pricing location is a location at which market

transactions are settled using publicly available LMPs. For simplicity, it is assumed that the

set of pricing locations for AMES coincides with the set of transmission grid nodes.

4.4.3 Structural Configuration of the AMES LSEs

The AMES LSEs purchase bulk power in the AMES wholesale power market each day in

order to service customer demand (load) in a downstream retail market. The user specifies the
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Figure 4.7 Core Module Components of the AMES Framework

number J of LSEs as well as the location of these LSEs at various nodes of the transmission

grid. LSEs do not engage in production or sale activities in the wholesale power market. Hence,

LSEs purchase power only from Generators, not from each other.

For initial simplicity, the current study makes the usual empirically-based assumption that

the downstream retail demands serviced by the AMES LSEs exhibit negligible price sensitivity

and hence reduce to daily load profiles. In addition, the LSEs are modeled as passive entities

who submit these daily load profiles into the Day-Ahead Market as their demand bids without

strategic consideration. Specifically, at the beginning of each day D each LSE j submits a

daily load profile into the day-ahead market for day D+1 . This daily load profile indicates

the real power demand pLj(H) (in MWs) that must be serviced by LSE j in its downstream

retail market for each of 24 successive hours H.
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4.4.4 Structural Configuration of the AMES Generators

The AMES Generators are electric power generating units. The user specifies the number I

of Generators as well as the location of these Generators at various nodes of the transmission

grid. Generators sell power only to LSEs, not to each other. Each AMES Generator i is user-

configured with a production technology, learning capabilities, and an initial level Moneyo
i of

money holdings. Here we elaborate on Generator production technologies; learning capabilities

are separately taken up in Subsection 4.4.6 below.

With regard to production technology, it is assumed that each Generator has variable and

fixed costs of production. However, Generators do not incur no-load, startup, or shutdown

costs, and they do not face ramping constraints.13

More precisely, the technology attributes assumed for each Generator i take the following

form. Generator i has lower and upper production limits (in MWs), denoted by CapL
i and

CapU
i , that define the feasible production interval for its hourly real-power production level

pGi (in MWs).14 That is, for each i,

CapL
i ≤ pGi ≤ CapU

i (4.1)

In addition, Generator i has a total cost function giving its total costs of production per hour

for each pGi. This total cost function takes the form

TCi(pGi) = ai · pGi + bi · p2
Gi + FCosti (4.2)

where ai ($/MWh), bi ($/MW2h), and FCosti ($/h) are exogenously given constants. Note

that TCi(pGi) is measured in dollars per hour ($/h). Generator i’s total variable cost function
13As is standard in economics, variable costs are costs that vary with the level of production, and fixed costs

are costs such as debt and equity obligations associated with plant investments that are not dependent on
the level of production and that are incurred even if production ceases. As detailed by Kirschen and Strbac
(2004, Sec. 4.3), the concept of no-load costs in power engineering refers to quasi-fixed costs that would be
incurred by Generators if they could be kept running at zero output but that would vanish once shut-down
occurs. Startup costs are costs specifically incurred when a Generator starts up, and shutdown costs are costs
specifically incurred when a Generator shuts down. Finally, ramping constraints refer to physical restrictions
on the rates at which Generators can increase or decrease their outputs.

14In the current AMES modeling, the lower production limit CapL
i for each Generator i is a firm “must run”

minimum real-power production level. That is, if CapL
i is positive, then shutting down Generator i is not an

option for the AMES ISO. Consequently, for most applications of AMES, these lower production limits should
be set to zero.
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and (hourly prorated) fixed costs for any pGi are then given by

TVCi(pGi) = TCi(pGi)− TCi(0) = ai · pGi + bi · p2
Gi (4.3)

and

FCosti = TCi(0) (4.4)

respectively. Finally, the marginal cost function for Generator i takes the form

MCi(pGi) = ai + 2 · bi · pGi (4.5)

At the beginning of each day D, each Generator i reports a supply offer sR
i (D) to the AMES

ISO for use in each hour H of the Day-Ahead Market for day D+1 . This supply offer consists

of a reported marginal cost function

MCR
i (pGi) = aR

i + 2 · bR
i · pGi (4.6)

defined over a reported feasible production interval15

CapRL
i ≤ pGi ≤ CapRU

i (4.7)

This supply offer can be strategic in the sense that the reported cost coefficients aR
i and bR

i in

(4.6) can deviate from Generator i’s true cost coefficients ai and bi in (5.9) and the reported

feasible production interval [CapRL
i ,CapRU

i ] in (4.7) can deviate from Generator i’s true feasible

production interval [CapL
i ,CapU

i ] in (4.1).

Suppose Generator i is located at node k, and suppose Generator i in some day D reports

a supply offer sR
i (D) to the AMES ISO for the day D+1 Day-Ahead Market (along with all

other Generators). Let LMPk denote the node-k locational marginal price (LMP) that is then

subsequently determined by the AMES ISO in day D for some hour H of day D+1 , and let p∗Gi

denote the real power that Generator i has been cleared to inject at node k in hour H of day
15Here we follow closely the timing and basic form of the supply offers required by generators in the MISO

(2006) and ISO-NE (2006). One difference, however, is that the latter supply offers are in the form of step-
functions whereas we assume linearity to ease the representation of learning for the AMES Generators; see
Section 4.4.6 below. Interestingly, in the ISO-NE the generators can check a “UseOfferSlope” box permitting
the ISO to approximate their step-function offers by smooth curves.
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D+1 . Then the (possibly negative) profit accruing to Generator i in day D from the day-D

settlement of this financially binding contract for hour H of day D+1 is

Profitnew
i (p∗Gi) = LMPk · p∗Gi − TCi(p∗Gi) (4.8)

Moreover, as a result of this settlement, the updated cumulated money holdings for Generator

i are given by

Moneynew
i = Moneyprev

i + Profitnew
i (p∗Gi) (4.9)

Since Generator i’s profits (4.8) can be negative, it is clear from (4.9) that Generator i faces a

risk of insolvency, i.e., a risk that its money holdings will run out. It is assumed in the AMES

framework that any Generator who becomes insolvent must immediately exit the market.

4.4.5 Structural Configuration of the ISO

As in actual ISO-managed wholesale power markets operating under the WPMP market

design, the AMES ISO during each day D is charged with determining a schedule of opti-

mal power commitments and LMPs for each hour of the Day-Ahead Market in day D+1 .

This schedule is conditional on reported LSE demand bids, reported Generator supply offers

(marginal cost functions plus production limits), thermal limits on branch flows, and nodal

balance constraints ensuring supply equals demand (load) at each transmission grid node.

As usual, “optimal” is interpreted to mean that total net surplus is maximized. The

resulting optimization problem is known as a bid-based AC optimal power flow (OPF) problem.

As typically done in actual markets, the AMES ISO approximates this difficult bid-based AC

OPF problem by means of a simpler bid-based DC OPF problem in which real power constraints

are linearized and reactive power constraints are ignored.16

Recall from Section 4.4.3 that the AMES LSEs are currently modeled as non-strategic

entities servicing price-insensitive loads whose reported demand bids in each day D take the

form of their true daily load profiles. In this case the maximization of total net surplus reduces
16See Sun and Tesfatsion (2006) for a detailed discussion of this approximation.
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to the minimization of total variable cost. Consequently, using the variable definitions in

Tables 5.1 and 5.2, the bid-based DC OPF problem solved by the AMES ISO in day D for

each hour of the Day-Ahead Market in day D+1 takes the following specific form:

Minimize Generator-reported total variable cost

I∑
i=1

[aR
i pGi + bR

i p2
Gi] (4.10)

with respect to real-power production levels and voltage angles

pGi, i = 1, ..., I; δk, k = 1, ...,K

subject to:

Real power balance constraint for each node k = 1, ...,K:

0 = PLoadk − PGenk + PNetInjectk (4.11)

where

PLoadk =
∑
j∈Jk

pLj (4.12)

PGenk =
∑
i∈Ik

pGi (4.13)

PNetInjectk =
∑

km ormk∈BR

Pkm (4.14)

Pkm = Bkm[Vo]2 [δk − δm] (4.15)

Real power thermal constraints for each branch km ∈ BR:

|Pkm| ≤ PU
km (4.16)
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Reported real-power production constraints for each Generator i = 1, .., I:

CapRL
i ≤ pGi ≤ CapRU

i (4.17)

Voltage angle setting at reference node 1:

δ1 = 0 (4.18)

As shown in Sun and Tesfatsion (2006), this DC OPF problem can equivalently be repre-

sented in the numerically desirable form of a strictly convex quadratic programming (SCQP)

problem if the balance constraints (5.26) are used to eliminate the voltage angles δk by substi-

tution. However, this elimination prevents direct generation of solution values for LMPs since,

by definition, the LMP for node k is the solution value for the multiplier (shadow price) for

the kth nodal balance constraint.

For this reason, we replace the standard DC OPF objective function (4.10) with the fol-

lowing augmented form:
I∑

i=1

[aR
i pGi + bR

i p2
Gi] + π

[ ∑
km∈BR

[δk − δm]2
]

, (4.19)

where π is a positive soft penalty weight on the sum of squared voltage angle differences.

As carefully demonstrated in Sun and Tesfatsion (2006), the augmentated DC OPF objec-

tive function (4.19) provides a number of benefits based on both physical and mathematical

considerations.

First, the resulting augmented DC OPF problem now has a numerically desirable SCQP

form permitting the direct generation of solution values for LMPs as well as for real power

production levels, branch flows, and voltage angles. Second, the validity of the DC OPF as

an approximation for the underlying AC OPF relies on an assumption of small voltage angle

differences, and the augmented DC OPF problem permits this assumption to be subjected

to systematic sensitivity tests through variations in the penalty weight π. Third, solution

differences between the non-augmented and augmented forms of the DC OPF problem can be

reduced to arbitrarily small levels by selecting an appropriately small value for π.
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To solve this augmented DC OPF problem, the AMES ISO invokes the SCQP solver

QuadProgJ through an outer shell DCOPFJ. More precisely, as illustrated below in Section 4.5,

the AMES ISO passes to DCOPFJ current DC OPF input data in standard (SI) units together

with base apparent power and voltage values So and Vo. DCOPFJ converts this SI input data

into per unit (pu) form and performs all needed matrix and vector representations. DCOPFJ

then invokes QuadProgJ to solve for LMPs, voltage angles, real power production levels, real

power branch flows, and various other useful quantities with all internal calculation carried

out in pu terms. QuadProgJ then passes these pu solution values back to DCOPFJ, which

outputs them in SI units.

In future studies, the AMES ISO will also have to solve DC OPF problems for the Real-

Time Market to settle any differences that arise between day-ahead commitments and real-

time conditions due to system disturbances (e.g. sudden line outages or changes in demand).

However, in our initial experiments with the AMES framework we are not considering system

disturbances that would cause such differences to arise. Consequently, all load obligations are

fully met through Day-Ahead Market transactions and the Real-Time Market is inactive.

4.4.6 Learning Configuration for the AMES Generators

In general, multiple Generators at multiple nodes could be under the control of a single

generation company (“GenCo”). This control aspect is critically important to recognize for the

study of real-world strategic trading. This situation can be handled in the AMES framework

by permitting coordinated learning across Generators controlled by a single GenCo.

For initial simplicity, however, the AMES Generators are currently modeled as autonomous

energy traders with strategic learning capabilities; see Figure 4.8. Each AMES Generator

adaptively selects its supply offers on the basis of its own past profit outcomes using a version

of a stochastic reinforcement learning algorithm developed by Roth-Erev (1995) based on

human-subject experiments, hereafter referred to as the VRE learning algorithm. This section

briefly outlines the implementation of the VRE learning algorithm for an arbitrary Generator

i.
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Figure 4.8 A Computational Generator (Seller)

Suppose it is the beginning of the initial day D=1, and Generator i must choose a supply

offer from its action domain (ADi) to report to the AMES ISO for the Day-Ahead Market in

day D+1 . As will be seen below, for learning purposes the only relevant attribute of ADi is

that it has finite cardinality Mi ≥ 1.17

The initial propensity of Generator i to choose supply offer m ∈ ADi is given by a non-

negative number qim(0). In general, these initial propensities can be any real numbers as

specified by the AMES user. However, the default setting used in this study is that these

initial propensities are equal. That is, we specify a fixed value qi(0) such that

qim(0) = qi(0) for all supply offers m ∈ ADi (4.20)

Now consider the beginning of any day D ≥ 1, and suppose the current propensity of
17Technical details concerning the construction of each Generator i’s action domain ADi are taken up in the

appendix. The key issue is how to construct the sets ADi to give each Generator an economically meaningful
and realistically flexible selection of supply offers without introducing hidden structural biases favoring some
Generators over others.
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Generator i to choose supply offer m ∈ ADi is given by qim(D). The choice probabilities that

Generator i uses to select a supply offer for day D are then constructed from these propensities

as follows:18

pim(D) =
exp(qim(D)/Ci)∑Mi
j=1 exp(qij(D)/Ci)

, m ∈ ADi (4.21)

In (4.21), Ci is a cooling parameter that affects the degree to which Generator i makes use of

propensity values in determining its choice probabilities. As Ci → ∞, then pim(D) → 1/Mi,

so that in the limit Generator i pays no attention to propensity values in forming its choice

probabilities. On the other hand, as Ci → 0, the choice probabilities (4.21) become increasingly

peaked over the particular supply offers m having the highest propensity values qim(D), thereby

increasing the probability that these supply offers will be chosen.

At the end of day D, the current propensity qim(D) that Generator i associates with each

supply offer m ∈ ADi is updated in accordance with the following rule. Let m′ denote the

supply offer that was actually selected and reported into the Day-Ahead Market by Generator

i in day D, and let Profitim′(D) denote the profits (positive or negative) attained by Generator

i in the settlement of the Day-Ahead Market at the end of day D in response to its choice of

supply offer m′. Then, for each supply offer m ∈ ADi,19

qim(D+1) = [1− ri]qim(D) + Responseim(D) , (4.22)

where

Responseim(D) =


[1− ei] · Profitim′(D) if m = m′

ei · qim(D)/[Mi − 1] if m 6= m′,

(4.23)

18In the original algorithm developed by Erev and Roth (1998) and Roth and Erev (1995), the choice proba-
bilities are defined in terms of relative propensity levels. Here, instead, use is made of a “simulated annealing”
formulation in terms of exponentials. As will be seen below in (4.22), in the current context the propensity
values can take on negative values if sufficiently large negative profit outcomes are experienced, and the use of
exponentials ensures that the choice probabilities remain well defined even in this event.

19The response function appearing in (4.22) modifies the response function appearing in the original algorithm
developed by Erev and Roth (1998) and Roth and Erev (1995). The modification is introduced to ensure that
learning (updating of choice probabilities) occurs even in response to zero-profit outcomes, which are particularly
likely to arise in initial periods when Generator i is just beginning to experiment with different supply offers
and the risk of overbidding to the point of non-dispatch is relatively high. See Koesrindartoto (2002) for a
detailed discussion and experimental exploration of this zero-profit updating problem with the original Roth-
Erev learning algorithm. See Nicolaisen et al. (2001) for a detailed motivation, presentation, and experimental
application of the modified response function.
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where m 6= m′ implies Mi ≥ 2. The introduction of the recency parameter ri in (4.22) acts as

a damper on the growth of the propensities over time. The experimentation parameter ei in

(4.23) permits reinforcement to spill over to some extent from a chosen supply offer to other

supply offers to encourage continued experimentation with various supply offers in the early

stages of the learning process.

Generator i faces a trade-off in each day D between information exploitation and infor-

mation exploration. The VRE learning algorithm outlined above resolves this trade-off by

ensuring continual exploration but at a typically declining rate. More precisely, under the

VRE learning algorithm, note that Generator i in day D does not necessarily choose a supply

offer with the highest accumulated profits to date. Given a suitably small value for ei, selected

supply offers generating the highest accumulated profits tend to have a relatively higher prob-

ability of being chosen, but there is always a chance that other supply offers will be chosen

instead. This ensures that Generator i continues to experiment with new supply offers to some

degree, even if its choice probability distribution becomes peaked at a particular selected sup-

ply offer because of relatively good profit outcomes. This helps to reduce the risk of premature

fixation on suboptimal supply offers in the early stages of the decision process when relatively

few supply offers have been tried.

In summary, the complete VRE learning algorithm applied to Generator i is fully charac-

terized once user-specified values are provided for the number Mi of possible supply offer se-

lections and the following four learning parameters: the initial propensity value qi(0) in (4.20);

the cooling parameter Ci in (4.21); the recency parameter ri in (4.22); and the experimentation

parameter ei in (4.23). It is interesting to note, in particular, that the VRE learning algorithm

is well-defined for any action domain AD consisting of finitely many elements, regardless of

the precise nature of these elements.
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4.5 Dynamic Five-Node Test Case

4.5.1 Overview

Consider a situation in which five Generators and three LSEs are distributed across a 5-

node transmission grid as depicted in Figure 5.2. An interesting aspect of this transmission

grid is that not all nodes are directly connected; for example, node 5 is not directly connected

to either node 2 or node 3.

Originally due to John Lally (2002), this five-node transmission grid configuration is now

used extensively in ISO-NE/PJM training manuals to solve for DC-OPF solutions at a given

point in time conditional on variously specified marginal costs and production limits for the

Generators and variously specified price-insensitive loads for the LSEs. The implicit assump-

tion in all of these static training exercises is that the true cost and true production limits of

the Generators are known. Nowhere is any mention made of the possibility that Generators in

real-world ISO-managed wholesale power markets might learn to exercise market power over

time through strategic reporting of their cost and production attributes.

In this section we illustrate how the AMES wholesale power market framework can be used

to transform these static training exercises into a more realistic dynamic form with strategically

learning Generators. Detailed grid, production, and load input data for a specific dynamic

five-node test case are provided in Table 5.8.20 As seen in this table, and depicted graphically

in Figure 5.4, the daily load profile for each LSE is price insensitive and peaks at hour 17.

Note, also, that Generator 4 is a “peaker” unit with relatively high hourly marginal costs

MC(p) = 30 + 0.012p for each p, where p denotes hourly real-power production in megawatts

(MWs). Also, each Generator has a finite upper limit CapU on its hourly real power production.

We first run this dynamic five-node test case under a “no learning” assumption for Gener-

ators, i.e. Generators are assumed to report to the ISO their true marginal cost functions and

true production limits. Our findings for this no-learning case, detailed in Section 4.5.2, reveal

the complicated effects of daily load profiles, transmission congestion, and production limits
20The transmission grid configuration, reactances, locations of the Generators and LSEs, and initial hour-0

load levels in Table 5.8 are taken from Lally (2002). The general shape of the LSE load profiles is adopted from
a 3-node example presented in Shahidehpour et al. (2002, pp. 296-297).
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on LMP determination over time, even in the absence of strategic reporting by Generators.

We next run this dynamic five-node test case under the assumption that the profit-seeking

Generators can report strategic supply offers to the ISO. More precisely, the Generators still

must report their true production limits to the ISO; but they can now learn over time what

marginal cost attributes to report to the ISO in an attempt to increase their profit earnings.21

As clarified in the Appendix, we construct each Generator i’s action domain ADi using five

action-domain parameter values {M1,M2,RIMaxL,RIMaxU , SS} set identically across the

Generators to ensure identical cardinalities and similar densities. In addition, for simplicity,

each Generator i selects supply offers from its action domain using VRE reinforcement learning

with commonly specified values for the four learning parameters {q(0), C, r, e}; cf. Section 4.4.6.

These parameter values for action domain construction and learning are given in Table 4.4.

The existence of price-insensitive loads provides a potentially golden opportunity for the two

largest Generators 3 and 5 to exercise market power. Note from Table 5.8 that the peak load in

hour 17 is 1153.59, and that the combined capacity of the smallest three Generators 1, 2, and

4 is only 410MWs. It follows that this peak load cannot be met unless Generator 3 (520MWs)

and Generator 5 (600MWs) are both dispatched to some extent. Consequently, if these profit-

seeking Generators had full structural information, their reported marginal costs should be

as high as permitted by their action domains. The question is whether the simple VRE

reinforcement learning algorithm permits these Generators to learn to exercise this potential

market power.

As detailed below in Section 4.5.3, the answer is a resounding “yes.” All five Generators

learn to implicitly collude on higher-than-true reported marginal costs. Moreover, the marginal

costs reported by Generators 3 and 5 typically are near or at the highest possible levels per-

mitted by their action domains. Production and LMP solutions differ dramatically from the

production and LMP solutions obtained for the no-learning case reported in Section 4.5.2. The

result is a substantial increase in the total variable cost of operation at the ISO-determined
21The Generators thus behave as if they were in a leader-follower game with the ISO. Since the Generators as

currently implemented do not explicitly recognize the presence of rival Generators in their choice environments,
there is no strategic interaction among the Generators per se.
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“optimal” Day-Ahead Market DC OPF solution for each hour of each day.

Figure 4.9 A Five-Node Transmission Grid Configuration

4.5.2 Case 1: Generators Report True Supply Data

Suppose each Generator submits its true marginal cost function and true production limits

into the Day-Ahead Market. That is, suppose Generators do not report strategic supply offers.

In this case, the augmented DC OPF problem solved by the ISO for each hour H involves the

minimization of true Generator total variable cost (subject to a small voltage angle difference

penalty) conditional on LSE loads, nodal balance constraints, true Generator upper and lower

production limits, and upper and lower thermal limits on each branch of the transmission grid;

compare Section 4.4.5.

Tables 4.5 and 4.6 report outcomes in standard (SI) units obtained for this dynamic 5-node

test case by means of QuadProgJ invoked through DCOPFJ. These outcomes include optimized

solution values for real power branch flows, production levels, LMPs (nodal balance constraint
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Figure 4.10 24 Hour Load Distribution for the Dynamic 5-Node Test Case

multipliers), and minimum total variable cost for 24 successive hours in the Day-Ahead Market.

These outcomes reveal that branch congestion occurs between node 1 and node 2 (and

only these nodes) in each of the 24 hours. This can be verified by examining column P12

in Table 4.5, which shows that the real power flow P12 on branch km = 12 is at its upper

thermal limit (250 MWs) for each hour. The direct consequence of this branch congestion is

the occurrence of widespread LMP separation, i.e. the LMP values differ across all nodes for

each hour. This can be verified by examining output columns LMP1-LMP5 in Table 4.6.

Examining this LMP data more closely, it is seen that LMP2 and LMP3 (the LMPs for

nodes 2 and 3) exhibit a sharp change in hour 17, increasing between hour 16 and hour 17 by

about 100% and then dropping back to more normal levels in hour 18 and beyond. Interestingly,

this type of sudden spiking in LMP values is also observed empirically in MISO’s Dynamic

LMP Contour Map for real-time market prices, which is updated every five minutes; see, for

example, Figure 4.11.
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Figure 4.11 LMP Separation and Spiking in the MISO Energy Region

The rather dramatic LMP spiking in hour 17 can be traced to several factors. First, as

seen in Figure 5.4, the load profile for each LSE peaks at hour 17. Second, when solving the

DC OPF problem to meet the high load in hour 17, the ISO has to take into consideration

the thermal limit constraining the flow of power on branch km = 12 as well as the upper limit

CapU constraining the production of Generator 3. Both of these constraints turn out to be

binding in hour 17. As seen in Table 4.5, the real power flow in branch km = 12 is at its upper

limit (250 MWs) for all 24 hours. As seen in Table 4.6, Generator 3 is dispatched in hour 17

at its upper production limit (520 MWs).

Given the configuration of the transmission grid, to meet the hour 17 peak load the ISO is

forced to back down (relative to hour 16) the less expensive production of Generators 1 and 2

and to use instead the more expensive production of the “peaker” Generator 4. After the peak

hour 17, the load returns to lower levels. The ISO is then able to schedule Generator 1 and

Generator 2 at their more normal levels, with Generator 1 at its upper production limit, and
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to avoid scheduling any production from Generation 4; note from Table 5.8 that Generator

4’s minimum production level (CapL) is 0. Furthermore, the LMPs drop back to their more

normal levels after hour 17.

These illustrative 5-node test case outcomes for 24 successive hours in the Day-Ahead

Market raise intriguing economic issues concerning the operation of ISO-managed wholesale

power markets in the presence of inequality constraints on branch flows and production levels.

The strong sensitivity of the optimized LMP and real power production values to changes in

the set of binding (active) constraints is of particular interest.

Equally intriguing, however, is whether the Generators might learn to make use of the

outcomes for any particular operating day D to change their reported supply offers for day

D+1 and beyond. The next section considers this issue.

4.5.3 Case 2: Generators Report Strategic Supply Offers

Now suppose, in contrast to Case 1, that the Generators do not necessarily report their

true marginal costs to the ISO for the Day-Ahead Market. Rather, using the VRE stochastic

reinforcement learning algorithm detailed in Section 4.4.6, with parameter values as specified

in Table 4.4, each profit-seeking Generator learns over time which marginal cost function to

report to the ISO based on the profits it has earned from previously reported functions.

To control for random effects, outcomes for the learning case are reported below in the form

of mean and standard deviation values obtained for twenty runs using the twenty different seed

values reported in Table 4.4.22 Moreover, in these twenty runs, all five Generators appear to

“converge” by day 422 to a sharply peaked choice probability distribution in which a probability

of 0.999 is assigned to a single supply offer.23 Consequently, all learning outcomes reported

below are for day 422.

Table 4.7 provides detailed numerical solution values (means and standard deviations) for

branch flows on day 422. Recalling that the thermal limit on branch km = 12 is 250MWs,
22Each Generator implements VRE learning by means of its own JReLM learning module, which must be

initialized with a seed value for its pseudo-random number generator. Each initial seed value reported in
Table 4.4 is used to generate five pseudo-random numbers, one for each Generator. Each of these numbers is
then used in turn as the initial seed value for the corresponding Generator’s JReLM learning module.

23The mean convergence time across the five Generators was actually only 62 days.
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note that congestion occurs on branch km = 12 in the peak hour 17 (and for several hours

thereafter) in all 20 runs. Moreover, although the mean flow on branch km = 12 is slightly

below the thermal limit in other hours, in fact this branch is congested during all 24 hours

of day 422 in all but three of the twenty runs. Moreover, no other branch is ever congested.

These findings are similar to the no-learning case, in which branch km = 12 (and only this

branch) was found to be persistently congested.

Tables 4.8 and 4.9 provide detailed numerical solution values (means and standard devia-

tions) for real power production levels and LMPs, respectively, on day 422. Table 4.10 gives

the ordinate value aR and slope value bR for the (linear) marginal cost function reported to

the ISO on Day 422 by each of the five Generators in each of the twenty runs. In the follow-

ing discussion we highlight various aspects of these outcomes that differ significantly from the

corresponding outcomes presented for the no-learning case in Section 4.5.2.

Figure 4.12 displays the (mean) solution values obtained for production for each of the 24

hours on day 422, along with the corresponding solution values obtained for day 422 in the

absence of Generator learning.24 In the no-learning case, note that the “peaker” (high cost)

Generator 4 is only dispatched to produce energy at the peak load hour 17. In the learning

case, however, Generator 4 is able to use strategic supply offers to ensure it is dispatched at

approximately its upper production limit (200MWs) throughout each hour of the day. Also,

in the no-learning case the “cheap” Generator 5 is regularly dispatched at a high production

level during each hour of the day, but in the learning case it is backed way down because its

strategic supply offers make it appear to be a relatively more expensive Generator.

This heavier reliance on costlier generation in the learning case substantially increases the

total variable cost of operation. Indeed, as seen in Figure 4.13, the minimum total variable cost

of operation under the learning case is roughly three times higher than under the no-learning

case.

Figure 4.14 graphically depicts the 24-hour (mean) LMP solution values for the learn-
24Given the stationarity of the daily load profiles and the Generators’ cost functions and production limits,

and the absence of system disturbances, in the no-learning case the 24-hour outcomes obtained for any one day
are the same as for any other day.
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ing case along with the 24-hour LMP solution values for the no-learning case. Interestingly,

although the LMPs for the learning case are considerably higher than the LMPs for the no-

learning case, they are also less volatile around the peak load hour 17. Consequently, the ISO

is not able to use the appearance of price spikes in peak load hours to detect the considerable

exercise of market power by the learning Generators. Rather, some form of direct auditing of

the Generators’ cost attributes would seem to be required.

Figure 4.15 displays the (mean) marginal cost functions that the five Generators report

to the ISO on day 422, along with their true marginal cost functions. Despite the absence

of any explicit collusion, all five Generators have learned to report higher-than-true marginal

cost functions with respect to both ordinate and slope. In the case of Generators 3 and 5, the

two largest generating units, the increase is substantial; these two Generators quickly learn to

report a marginal cost function that is near or at the highest level permitted in their action

domains.25 Clearly the core aspects of the WPMP market design currently captured in the

AMES framework do not provide sufficient mechanisms to prevent Generators from exercising

substantial market power through strategic reporting of supply offers.

These findings can be compared with the findings of Wolfram (1999), who determined

empirically that the (pre-NETA) uniform-price double auction design in effect for the UK

wholesale power market at the time of her study provided incentives for generators to raise

prices above costs. The Day-Ahead Market under the WPMP design collapses to a uniform-

price double auction only in the absence of transmission grid congestion; LMP separation

occurs if any branch is congested. Nevertheless, the AMES Generators are able to exercise

substantial market power whether or not LMP separation occurs.

4.6 Concluding Remarks

The North American power transmission grid has been called “the largest and most com-

plex machine in the world” (Amin, 2004, p. 31). An extraordinary experiment is under way to
25More precisely, the lower and upper range-index values implied by these Generators’ reported marginal cost

curves typically converge with rapidity to values that are near or at their highest permitted range-index levels
RIMaxL = 0.75 and RIMaxU = 0.75; cf. Table 4.4.
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see whether the physical operation of this complex machine can be successfully married with

a restructured commercial architecture encouraging increased reliance on demand and supply

forces. Smart electrical devices permitting more distributed physical control of the grid are

being introduced along with market designs permitting more decentralized pricing and allo-

cation mechanisms, a trend one commentator has called “electricity’s third great revolution”

(Mazza, 2003).

Stakeholders, policy makers, and researchers all clearly recognize the critical need for this

experiment to succeed (FERC, 2006). Nevertheless, the issues raised by this experiment are

extremely challenging. How to analyze the potential dynamic performance of a system compris-

ing multiple distributed entities, some physical and some human, all with finite information

and computational capabilities? How to properly take into account the stability limits of

physical components as well as the strategic behaviors of human participants responding to

the incentives deliberately or inadvertently presented by system design features?

Agent-based modeling tools have been specifically developed to handle these types of com-

plexities, hence it is not surprising to find agent-based researchers actively involved in this elec-

tricity restructuring movement. As detailed by Davidson and McArthur (2005) and Widergren

et al. (2006), multi-agent systems are attracting significant research interest for power system

applications. Indeed, the IEEE Task Force on Multi-Agent Systems in Power Engineering

is charged with exploring the benefits, applications, and advanced functionality that can be

provided for power systems through agent technology. The members of this MAS Task Force

include economists as well as engineers, and academics as well as industry stakeholders.

In this study we explore the potential usefulness of agent-based tools for investigating the

efficiency and reliability of the Wholesale Power Market Platform (WPMP), a market design

proposed by the U.S. Federal Energy Regulatory Commission for common adoption by all

U.S. wholesale power markets (FERC, 2003). We first describe a newly developed agent-based

computational laboratory – the AMES framework – that models a wholesale power market

operating in accordance with core WPMP features over a realistically rendered transmission

grid. Using a dynamic 5-node test case for concrete illustration, we then explore the extent to
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which these core WPMP features permit and even encourage the exercise of market power by

Generators through strategic supply offer reporting.

More precisely, in the dynamic 5-node test case the AMES ISO does not know the AMES

Generators’ true cost attributes. Rather, in each operating day D, the AMES ISO must

formulate its DC OPF problem for each hour of the Day-Ahead Market for day D+1 based on

the cost attributes reported to it by the Generators. The profit-seeking Generators learn over

time what cost attributes to report to the ISO using a simple reinforcement learning algorithm

based on past profit outcomes. As seen in Section 4.5, despite the absence of any explicit

collusion the typical Generator converges within 62 days to a supply offer selection in which

its reported marginal cost function is uniformly higher than its true marginal cost function,

in some cases substantially higher. The resulting “optimal” DC OPF solutions determined by

the AMES ISO appear to have desirable properties, e.g. low LMP volatility during peak load

hours and congestion on only one branch. In fact, however, total variable costs of operation

are roughly three times higher than they would have been had the Generators reported their

true cost attributes. As captured in the current AMES framework, the core WPMP design

features do not prevent the considerable exercise of market power by Generators.

As detailed in Section 4.3, the AMES framework needs to be further extended to incorporate

additional key aspects of the WPMP design that could significantly impact the efficiency and

reliability of market operations. Moreover, initial conditions and parameter specifications

need to be more carefully calibrated to match real-world conditions. Nevertheless, we believe

the preliminary findings reported in this study suggest the great potential of agent-based

computational models to help ensure a successful restructuring of the electric power industry

through intensive sensitivity experiments.
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4.8 Appendix: Construction of Generator Action Domains

4.8.1 A.1 Overview

As detailed in Section 4.4.6, at the beginning of each day D each AMES Generator i uses a

variant of a well known Roth-Erev reinforcement learning algorithm to choose a supply offer
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sR
i to report to the AMES ISO for each hour H of the day D+1 Day-Ahead Market. Each

supply offer sR
i takes the form of a reported marginal cost function

MCR
i (p) = aR

i + 2bR
i p (4.24)

defined over a reported feasible production interval

CapRL
i ≤ p ≤ CapRU

i (4.25)

Here aR
i and bR

i are Generator i’s reported cost coefficients, p denotes Generator i’s hourly

real-power production level, and CapRL
i and CapRU

i are Generator i’s reported lower and upper

real-power production limits.

Each AMES Generator i chooses its supply offers sR
i from an action domain ADi with

finite positive cardinality Mi. A key issue is how to construct this action domain in a manner

that is both empirically sensible and computationally practical. Empirical sensibility suggests

that, unless the modeler has information to the contrary, the action domain ADi should provide

Generator i with the flexibility to choose from among a wide range of possible supply offers, and

that this degree of flexibility should be roughly similar across the Generators. Computational

practicality suggests that the number of supply offers included in ADi should not be unduly

large.

In keeping with these modeling goals, the action domain ADi for each AMES Generator i

is constructed under five simplifying assumptions. First, we assume that Generator i always

reports a non-trivial feasible production interval, i.e., CapRL
i < CapRU

i . Second, we assume

that Generator i only reports upward-sloping marginal cost functions (4.24), that is, bR
i > 0.26

Third, we assume that Generator i’s reported marginal cost curves always lie on or above

Generator i’s true marginal cost curve over the respective reported feasible production intervals.

Fourth, we assume that Generator i always reports its true lower production limit.27 Fifth, we
26In the MISO and ISO-NE, reported supply functions are required to be non-decreasing.
27As explained in footnote 14, the Generators’ reported lower production limits are treated as firm by the

AMES ISO. Since the current version of AMES lacks market power mitigation rules, the AMES Generators could
ensure themselves arbitrarily high profits if they were permited to report arbitrarily high lower production limits
into the Day-Ahead Market. For this reason, it is assumed in the current study that the AMES Generators are
closely monitored by the AMES ISO with regard to these lower production limits, ensuring that they always
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assume that Generator i always reports an upper production limit that is less than or equal

to its true upper production limit.

We show below that, given any positive value for a slope-start parameter SSi, we can

construct an Mi × 3 matrix whose rows constitute Mi “admissible supply offers in (reduced)

percentage form” that map uniquely into Mi reported supply offers sR
i satisfying the five

simplifying assumptions. This matrix is parameterized by two density-control parameters M1i

and M2i (with M1i × M2i = Mi) and two range-index parameters RIMaxL
i and RIMaxU

i

lying in [0, 1).28 If the five action-domain parameters (M1i,M2i,RIMaxL
i ,RIMaxU

i , SSi) are

set identically for each Generator i, and the above matrix construction is applied for each

Generator i, then the result is a collection of Generator-specific action domains that have

equal cardinalities and whose supply offer elements sR provide similar densities of coverage of

the regions lying above the Generators’ true marginal cost curves.

4.8.2 A.2 Percentage Representation of Supply Offers

Let a reported supply offer sR
i for Generator i be called admissible if it satisfies the five

simplifying assumptions in Section A.1. Admissibility of sR
i implies that sR

i consists of a

reported marginal cost function of form (4.24) defined over a reported production interval of

form (4.25) such that 0 < bR
i , 0 ≤ CapL

i = CapRL
i < CapRU

i ≤ CapU
i , 0 < MCi(CapL

i ) =

MCi(CapRL
i ) ≤ MCR

i (CapRL
i ), and MCi(p) ≤ MCR

i (p) for all p ∈ [CapL
i ,CapRU

i ]. Henceforth

any admissible reported supply offer sR
i will be compactly represented in the form

sR
i = (aR

i , bR
i ,CapRL

i ,CapRU
i ) (4.26)

Also, let any vector

sA
i = (RILi ,RIUi ,RCapL

i ,RCapU
i ) (4.27)

report their true lower limits. In the actual MISO and ISO-NE energy markets, generators are requested to
report their true lower and upper production limits, but it is not clear from the MISO and ISO-NE business
practices manuals just how closely generators are actually monitored to ensure compliance.

28As clarified below in Sections A.2 through A.4, these range-index parameters can be related to the “Lerner
Index” used in industrial organization studies as an indicator of market power.
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satisfying RILi ∈ [0, 1), RIUi ∈ [0, 1), 0 ≤ RCapL
i < RCapU

i ≤ 1, and RCapL
i CapU

i = CapL
i be

called an admissible percentage supply offer .

CLAIM: Let SSi > 0 be given. Then there exists a correspondence QSSi conditional on SSi

that maps each admissible percentage supply offer sA
i into a unique admissible reported supply

offer sR
i .

Proof: Let sA
i = (RILi ,RIUi ,RCapL

i ,RCapU
i ) denote any admissible percentage supply offer

(4.27). It will now be shown how the elements of sA
i , together with the structural attributes

of Generator i as reported in Table 5.1, can be used to construct a unique admissible reported

supply offer sR
i for Generator i. This construction will be carried out in successive steps,

some of which involve the determination of auxiliary variables. A schematic depiction of this

construction process can be viewed in Figure 4.16.

Step 0: Construction of CapRL
i and CapRU

i satisfying 0 ≤ CapL
i = CapRL

i < CapRU
i ≤ CapU

i

Let li and ui denote Generator i’s true marginal costs for producing at its true lower and

upper production limits, respectively, i.e.,

li = MCi(CapL
i ) = ai + 2biCapL

i > 0 (4.28)

ui = MCi(CapU
i ) = ai + 2biCapU

i > li (4.29)

Define CapRL
i = RCapL

i ·CapU
i and CapRU

i = RCapU
i ·CapU

i . Then, using the admissibility of

sA
i , it follows that CapU

i ≥ CapRU
i = RCapU

i ·CapU
i > RCapL

i ·CapU
i = CapRL

i = CapL
i ≥ 0.

Step 1: To get lRi ≥ li > 0

By admissibility of sA
i , RILi ∈ [0, 1), and li > 0 from (4.28). Now define lRi as

lRi =
li

1− RILi
≥ li > 0 (4.30)
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Given (4.28), (4.30), and CapRL
i = CapL

i from Step 0, note that RILi reduces to a standard

Lerner Index29 evaluation at the reported lower production limit CapRL
i if lRi = MCR

i (CapRL
i ).

The latter equality is established in Step 6 below.

Step 2: To get uStart
i > lRi

By asumption, SSi > 0, and we have ui from (4.29) and lRi from (4.30). Now define uStart
i

as

uStart
i =

 ui if ui > lRi

lRi + SSi if ui ≤ lRi

(4.31)

Clearly uStart
i > lRi by construction.

As clarified in subsequents steps below, there are two reasons for introducing the auxiliary

variable uStart
i in such a way that uStart

i > lRi : (a) to ensure that the reported marginal cost

function associated with sR
i is upward sloping; and (b) to ensure that the reported marginal

cost function associated with sR
i never dips below Generator i’s true marginal cost curve over

Generator i’s reported feasible production interval.

Step 3: To get uR
i > lRi

We know uStart
i > lRi from Step 2 and we know RIUi ∈ [0, 1) from the admissibility of sA

i .

Thus, we can define uR
i to be

uR
i =

uStart
i

1− RIUi
> lRi (4.32)

Given (4.29) and (4.32), note that RIUi reduces to a standard Lerner Index evaluation at the

reported upper production limit CapRU
i whenever uStart

i equals ui in (4.31), assuming uR
i =

MCR(CapRU
i ). The latter equality follows from Steps 4 and 5 below.

Step 4: To get bR
i > 0

29Given any quantity-price production point (Q, Pr), the Lerner Index LI evaluated at this point is defined
as follows: LI(Q, Pr) = [Pr −MC(Q)]/Pr.
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Recall that CapL
i is an exogenously given structural attribute of Generator i. Also, CapRU

i >

CapRL
i = CapL

i by Step 0, and uR
i > lRi by Step 3. Referring to Figure 4.16 for a schematic

depiction, one can then define 2bR
i (the slope of the reported marginal cost function) to be

2bR
i =

uR
i − lRi

CapRU
i − CapL

i

> 0 . (4.33)

Step 5: To get aR
i

Since we know CapRL
i from step 0, lRi from Step 1, and bR

i from Step 4, we can define aR
i

by

aR
i = lRi − 2bR

i CapL
i (4.34)

Step 6: To get MCR
i (CapRL

i ) = lRi ≥ MCi(CapL
i ) > 0

By assumption (see Table 5.1), MCi(CapL
i ) > 0. It then follows from Step 0, Step 1, the

definition of aR
i in Step 5, and the general definition of MCR

i (p) that MCR
i (CapRL

i ) = lRi ≥

li = MCi(CapL
i ) > 0.

Step 7: To get MCR
i (p) ≥ MCi(p) for all p ∈ [CapRL

i ,CapRU
i ]

From Step 0 one has CapRL
i = CapL

i , and from Step 6 one has MCR
i (CapRL

i ) ≥ MCi(CapL
i ).

On the other hand, Steps 2 and 3 imply that uR
i ≥ uStart

i ≥ ui = MCi(CapRU
i ), and Steps 4

and 5 imply that MCR
i (CapRU

i ) = aR
i + 2bR

i CapRU
i = uR

i . Consequently, MCR(p) lies on or

above MC(p) at the interval endpoints CapRL
i and CapRU

i . By linearity, it follows that MCR(p)

lies on or above MC(p) at all points p between these two points.

In summary, Steps 0-7 constructively determine a correspondence (conditional on SSi) that

uniquely maps any admissible percentage supply offer sA
i = (RILi ,RIUi ,RCapL

i ,RCapU
i ) into

a reported supply offer sR
i = (aR

i , bR
i ,CapRL

i ,CapRU
i ). Step 0 establishes that sR

i satisfies

simplifying assumptions 1, 4, and 5, and Steps 4 and 7 establish that sR
i satisfies simplifying

assumptions 2 and 3. Consequently, sR
i is admissible. This completes the proof of the Claim.
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QED.

4.8.3 A.3 Action Domain Construction

Under the five simplifying assumptions described in Section A.1, AMES Generator learning

only occurs with respect to the reported cost coefficients {aR, bR} and the reported upper

production limit CapRU . The reported lower production limit CapRL always equals the true

lower production limit CapL, and the entry RCapL
i in any admissible percentage supply offer

sA
i = (RILi ,RIUi ,RCapL

i ,RCapU
i ) is always equal to

RCapL
i =

CapL
i

CapU
i

(4.35)

Consequently, to construct the action domain for any Generator i, it suffices to focus attention

on reduced-form versions of the admissible percentage supply offers sA
i given by

αi = (RILi ,RIUi ,RCapU
i ) (4.36)

We will now take up the construction of the action domains for the AMES Generators

as implemented for the current study. Recall from Table 5.1 that the exogenously specified

attributes for each AMES Generator i include five action-domain attributes, as follows: the

cardinality Mi ≥ 1 of its action domain ADi; a slope-start parameter SSi > 0; two density-

control parameters M1i ≥ 1 and M2i ≥ 1 satisfying M1i ×M2i = Mi; and two range-index

parameters RIMaxL
i and RIMaxU

i ∈ [0, 1).

Given these action-domain attributes for Generator i, it will next be shown how we con-

struct an Mi × 3 action-domain matrix ADMati = AD(M1i,M2i,RIMaxL
i ,RIMaxU

i ) having

the following form:

ADMati =



αi1

αi2

...

αiMi


=



RILi1 RIUi1 RCapU
i1

RILi2 RIUi2 RCapU
i2

...
...

...

RILiMi
RIUiMi

RCapU
iMi


Mi×3

(4.37)
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where each of the Mi rows αim of this matrix represents a (reduced-form) admissible percentage

supply offer for Generator i; cf. (4.36). As established by the Claim in Section A.2, given

Generator i’s slope-start parameter value SSi together with relation (4.35), each row αim can

thus be used to generate an admissible reported supply offer sR
im = (aR

im, bR
im,CapRL

im ,CapRU
im )

for Generator i. The collection of all Mi of these generated supply offers sR
im then constitutes

Generator i’s action domain ADi.

By construction, the marginal cost curves associated with the supply offers sR
im in ADi all

lie in the region on or above the true marginal cost curve of Generator i. As clarified below,

the larger the specifications of M1i and M2i for any given RIMaxL
i and RIMaxU

i , the greater

the number of supply offer choices in ADi. Also, the smaller the specifications of RIMaxL
i and

RIMaxU
i for any given M1i and M2i, the denser is the marginal cost curve coverage provided

by ADi in the immediate upper neighborhood of the true marginal cost curve.

A more concrete understanding of the supply offer construction process can be gleaned

from Figure 4.16. The parameter M1i controls the number of lower marginal cost curve start-

points lRi lying on the vertical line at CapRL
i = CapL

i , i.e. at Generator i’s reported (equal

true) lower production limit. These start-points must all lie on or above Generator i’s true

marginal cost at this production point, given by li = MCi(CapL
i ). The parameter RIMaxL

i

controls how far up along this line these start-points extend. The parameter M2i controls how

many marginal cost curves “flare out” from each of the start-points lRi , and the parameter

RIMaxU
i controls the range of these flares by controlling the range of their end-points uR

i . The

slope-start parameter SSi is used to guarantee that each of these flared marginal cost curves

is upward sloping with an end-point uR
i that lies on or above Generator i’s true marginal cost

curve.30

For the illustrative experiments reported in Section 4.5, two additional simplifying as-

sumptions are maintained. First, we assume the AMES Generators heed the regulations of the
30This flare approach to the construction of supply-offer action domains, here applied to linear marginal

cost functions, can readily be extended to handle various other types of parameterized functional forms for the
marginal cost functions. An even denser coverage would be obtained by extending to a double-flare approach
in which flared marginal cost curves branch down and back from each end-point uR

i as well as up and forward
from each start-point lRi .
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AMES ISO and always report their true upper production limits as well as their true lower

production limits.31 This assumption implies that all of the elements RCapU
im in the third

column of ADMati are equal to 1.00. Second, we assume that the AMES Generators always

have the option of reporting their true marginal cost functions, which corresponds to settings

of 0.00 for the lower and upper range-index entries RIL and RIU . This assumption implies

that at least one row m of ADMati takes the form (0.00, 0.00, 1.00), which we always choose

to be row m = 1.

Our construction process for the Mi × 3 matrix ADMati then proceeds as follows:

CASE 1:

If M1i = M2i = 1, the 1× 3 matrix ADMati is constructed as (0.00, 0.00, 1.00).

CASE 2:

Suppose M1i = 1 and M2i = 2. In this case the first row of the 2 × 1 matrix ADMati is

filled in as (0.00, 0.00, 1.00) and the second row is filled in as (0.00,RIMaxU
i , 1.00).

CASE 3:

Suppose M1i = 2 and M2i = 1. In this case the first row of the 2 × 1 matrix ADMati is

filled in as (0.00, 0.00, 1.00) and the second row is filled in as (RIMaxL
i , 0.00, 1.00).

CASE 4:

Suppose M1i ≥ 2 and M2i ≥ 2. In this case we define step increments as follows:

Inc1 =
RIMaxL

i

M1i − 1
; (4.38)

Inc2 =
RIMaxU

i

M2i − 1
(4.39)

We then specify M1i equally spaced lower range-index values {v1, . . . , vM1i} starting at v1 =

0.00 and ending at vM1i = RIMaxL
i and spaced at distance Inc1 from each other. Similarly,

we specify M2i equally spaced upper range-index values {w1, . . . , wM2i} starting at w1 = 0.00

and ending at wM2i = RIMaxU
i and spaced at distance Inc2 from each other.

31As previously noted in Section A.1, footnote 27, generators in the MISO and ISO-NE are required to report
their true lower and upper production limits as part of their supply offers.
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The first column of ADMati is then filled in as follows: the first M2i places are filled in

with M2i copies of v1; the second M2i places are then filled in with M2i copies of v2, and

so on through vM1i . (Recall that M1i ×M2i = Mi.) The second column of ADMati is then

filled in as follows: the first M2i places are successively filled in with the successive elements of

w = (w1, . . . , wM2i); the second batch of M2i places is then also successively filled in with the

successive elements of w; and so on through M1i iterations. This completes the construction

of ADMati.

Finally, note that the matrix ADMati does not depend on any specific structural or tech-

nological aspects of Generator i; all entries are in unit-free percentage form. Consequently, if

desired, a single parameter specification (M1,M2,RIMaxL,RIMaxU , SS) can be used to de-

rive a single action domain matrix ADMat, from which all of the the individual action domains

ADi for Generators i = 1, . . . , I are then derived. In this case the Generators’ action domains

will all have the same cardinality M = M1 × M2, thus guaranteeing that no Generator is

advantaged by having more supply offer choices. Moreover, the supply offers in the individual

action domains ADi will provide roughly similar densities of coverage of the regions on or

above the Generators’ true marginal cost curves.

All of the experimental findings presented in Section 4.5 for the 5-node test case were

generated using a single parameter specification (M1,M2,RIMaxL,RIMaxU , SS) for the con-

struction of the Generators’ action domains. This parameter specification is given in Table 4.4.

4.8.4 A.4 A Numerical Example

In this section a simple numerical example is given to illustrate the process outlined in Sec-

tion A.3 for constructing an action domain matrix ADMati for an arbitrary Generator i. The

example is also used to show concretely how each row m of ADMati effectively constitutes an

admissible percentage supply offer sA
im that can be mapped into an admissible reported supply

offer sR
im suitable for submission into the Day-Ahead Market.

Suppose M1i = 5 and M2i = 3, implying that Mi = 15. Suppose RIMaxL
i = RIMaxU

i =

0.40. Define Inc1 = RIMaxL
i /[M1i − 1] = 0.40/4 = 0.10 and Inc2 = RIMaxU

i /[M2i − 1] =
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0.40/2 = 0.20. Specify a vector v consisting of M1i = 5 lower range-index values and a vector

w consisting of M2i = 3 upper range-index values, as follows:

v = (0.00, 0.10, 0.20, 0.30, 0.40)

w = (0.00, 0.20, 0.40)

Next, use the elements of the vectors v and w to fill out the 15× 3 matrix ADMati in the

manner described in Section A.3, as follows:

ADMati =



0.00 0.00 1.00

0.00 0.20 1.00

0.00 0.40 1.00

0.10 0.00 1.00

0.10 0.20 1.00

0.10 0.40 1.00

0.20 0.00 1.00

0.20 0.20 1.00

0.20 0.40 1.00

0.30 0.00 1.00

0.30 0.20 1.00

0.30 0.40 1.00

0.40 0.00 1.00

0.40 0.20 1.00

0.40 0.40 1.00


15×3

The rows of ADMati represent, in percentage form, the 15 possible action (supply offer) choices

for Generator i for the Day-Ahead-Market in each day D. Consequently, they represent Gen-

erator i’s action domain ADi.
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To see this more concretely, suppose Generator i’s true marginal cost coefficients are given

by ai = 10.00 and bi = 0.025, its true lower production limit is CapL
i = 0.00, and its true

upper production limit is CapU
i = 100.00. Suppose it is the morning of day D, and Generator

i must report a supply offer to the AMES ISO for the day D+1 Day-Ahead Market.

To accomplish this, Generator i queries JReLM, its learning module, regarding which

supply offer to choose from among the supply offers m = 1, . . . , 15 in its action domain ADi.

Suppose JReLM returns an action choice m = 5. What does this mean?32

The selection m = 5 in fact corresponds to the fifth row vector in Generator i’s action

domain matrix ADMati: namely, αi5 = (RILi5,RIUi5,RCapU
i5) = (0.10, 0.20, 1.00). Given the

maintained assumption that CapRL
i5 = CapL

i , this row vector determines an admissible per-

centage supply offer sA
i5 of form (4.27) with RCapL

i5 = CapL
i /CapU

i . As established by the

Claim in Section A.2, sA
i5 in turn corresponds to an admissible reported supply offer sR

i5 =

(aR
i5, b

R
i5,CapL

i5,CapRU
i5 ), which is the supply offer form Generator i actually reports to the

AMES ISO.

To see the precise form sR
i5 takes, we first need to compute the start-point li and end-point

ui for Generator i’ true marginal cost curve; cf. Figure 4.16. By (4.28) and (4.29),

li = ai + 2biCapL
i = 10.00 + 2 · 0.025 · 0.00 = 10.00

ui = ai + 2biCapU
i = 10.00 + 2 · 0.025 · 100.00 = 15.00

Using (4.30), the start-point lRi5 of Generator i’s reported marginal cost curve can then be

recovered from RILi5 as follows:

lRi5 =
li5

1− RILi5
=

10.00
1− 0.10

= 11.11

32Recall from Section 4.4.6 that, for implementation of Roth-Erev reinforcement learning, JReLM has no need
to know anything about the action domain ADi other than its cardinality Mi. In effect, JReLM operates on
the index set for ADi rather than on the elements themselves.
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The next step is to recover the end-point uR
i5 of Generator i’s reported marginal cost curve

from RIUi5. Since lRi5 = 11.11 < ui = 15.00, relation (4.31) gives uStart
i5 = ui = 15.00. It then

follows from (4.32) that

uR
i5 =

uStart
i5

1− RIUi5
=

15.00
1− 0.20

= 18.75

Using (4.33) and (4.34), Generator i’s reported cost coefficients thus take the form

bR
i5 =

uR
i5 − lRi5

CapU
i − CapL

i

=
18.75− 11.11
100.00− 0.00

= 0.08 > 0

aR
i5 = lRi5 − 2bR

i5CapL
i = 11.11− 2 ∗ 0.08 ∗ 0.00 = 11.11

Finally, it follows from RCapU
i5 = 1.00 that CapRU

i5 = CapU
i = 100.00.

In summary, given the action choice m = 5 received from JReLM, the above calculations

establish that Generator i’s reported supply offer to the AMES ISO in the morning of day D

takes the form

sR
i5 = (aR

i5, b
R
i5,CapRL

i5 ,CapRU
i5 ) = (11.11, 0.08, 0.00, 100.00) (4.40)

After collecting a reported supply offer from each Generator in the morning of day D, the AMES

ISO submits these supply offers along with grid and load input data into its DCOPFJ module

to solve for optimal power commitments and LMPs for the day D+1 Day-Ahead Market. The

AMES ISO posts and settles these solution values by the end of day D. Generator i then reports

its profit outcome from this settlement to its learning module, JReLM, which uses this profit

outcome to update Generator i’s action choice probabilities, i.e. the probabilities attached to

the indices m = 1, . . . , 15 corresponding to the 15 rows of ADMati. When Generator i calls

upon JReLM the next day for an action (supply offer) choice for the day D+2 Day-Ahead

Market, JReLM chooses from among these indices in accordance with the updated action

choice probabilities.

This daily process is schematically depicted in Figure 4.17 for an AMES wholesale power

market consisting of just two generators.
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Figure 4.12 Dynamic 5-Node Test Case Solution Values for 24-Hour Real
Power Production Levels (Day 422) – Generator Learning
Compared with No Learning



www.manaraa.com

165

Figure 4.13 Dynamic 5-Node Test Case Solution Values for 24-Hour Min-
imum Total Variable Cost (Day 422) – Generator Learning
Compared with No Learning
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Figure 4.14 Dynamic 5-Node Test Case Solution Values for 24-Hour LMPs
(Day 422) – Generator Learning Compared with No Learning
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Figure 4.15 Dynamic 5-Node Test Case – Mean Reported Marginal Cost
Function Versus True Marginal Cost Function for Each Gen-
erator (Day 422)
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Figure 4.16 Generator i’s Feasible Supply Offers and True Marginal Cost
Function
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Figure 4.17 AMES Dynamic Flow with Learning Implementations for Gen-
erators 1 and 2
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Table 4.1 Admissible Exogenous Variables for the AMES Framework

Variable Description Admissibility Restrictions

K Total number of transmission grid nodes K > 0

N Total number of distinct network branches N > 0

I Total number of Generators I > 0

J Total number of LSEs J > 0

Ik Set of Generators located at node k Card(∪K
k=1Ik) = I

Jk Set of LSEs located at node k Card(∪K
k=1Jk) = J

So Base apparent power (three-phase MVAs) So ≥ 1

Vo Base voltage (line-to-line kVs) Vo > 0

Vk Voltage magnitude (kVs) at node k Vk = Vo, k = 1, . . . ,K

pLj Real power load (MWs) withdrawn by LSE j pLj ≥ 0, j = 1, . . . , J

km Branch connecting nodes k and m (if one exists) k 6= m

BR Set of all distinct branches km, k < m BR 6= ∅
Xkm Reactance (ohms) for branch km Xkm = Xmk > 0, km ∈ BR

Bkm [1/Xkm] for branch km Bkm = Bmk > 0, km ∈ BR

PU
km Thermal limit (MWs) for real power flow on km PU

km > 0, km ∈ BR

δ1 Reference node 1 voltage angle (radians) δ1 = 0

π Soft penalty weight for voltage angle differences π > 0

Moneyo
i Initial money holdings ($) for Gen i Moneyo

i > 0, i = 1, . . . , I

CapL
i True lower production limit (MWs) for Gen i CapL

i ≥ 0, i = 1, . . . , I

CapU
i True upper production limit (MWs) for Gen i CapU

i > CapL
i , i = 1, . . . , I

ai, bi True cost coefficients for Gen i bi > 0, i = 1, . . . , I

MCi(p) MCi(p) = ai + 2bip = Gen i’s true MC function MCi(CapL
i ) > 0, i = 1, . . . , I

FCosti Fixed costs (hourly prorated) for Gen i FCosti ≥ 0, i = 1, . . . , I

Mi Cardinality of the action domain ADi for Gen i Mi ≥ 1, i = 1, . . . , I

M1i,M2i Density-control parameters for ADi construction M1i ×M2i = Mi, i = 1, . . . , I

RIMaxL
i Range-index parameter for ADi construction RIMaxL

i ∈ [0, 1), i = 1, . . . , I

RIMaxU
i Range-index parameter for ADi construction RIMaxU

i ∈ [0, 1), i = 1, . . . , I

SSi Slope-start parameter for ADi construction SSi > 0, i = 1, . . . , I

qi(0) Initial propensity (learning) any real value, i = 1, . . . , I

Ci Cooling parameter (learning) Ci > 0, i = 1, . . . , I

ri Recency parameter (learning) 0 ≤ ri ≤ 1, i = 1, . . . , I

ei Experimentation parameter (learning) 0 ≤ ei < 1, i = 1, . . . , I
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Table 4.2 Endogenous Variables for the AMES Framework

Variable Description

pGi Real power injection (MWs) by Gen i = 1, . . . , I

δk Voltage angle (radians) at node k = 2, . . . ,K

LMPk Locational marginal price ($/MWh) at node k = 1, . . . ,K

Pkm Real power (MWs) flowing in branch km ∈ BR

PGenk Total real power injection (MWs) at node k = 1, . . . ,K

PLoadk Total real power withdrawal (MWs) at node k = 1, . . . ,K

PNetInjectk Total net real power injection (MWs) at node k = 1, . . . ,K

Profiti Realized profit ($/h) for Gen i = 1, . . . , I

Moneyi Cumulative money holdings ($) for Gen i = 1, . . . , I

CapRL
i Reported lower production limit (MWs) for Gen i = 1, . . . , I

CapRU
i Reported upper production limit (MWs) for Gen i = 1, . . . , I

aR
i , bR

i Reported cost coefficients for Gen i = 1, . . . , I
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Table 4.3 Dynamic 5-Node Test Case – DC OPF Structural Input Data
(SI)

So Vo

100 10

Ka πb

5 0.05

Branch
From To lineCapc Xd

1 2 250.0 0.0281
1 4 150.0 0.0304
1 5 400.0 0.0064
2 3 350.0 0.0108
3 4 240.0 0.0297
4 5 240.0 0.0297

Gen ID atNode FCost a b CapL CapU Init$

1 1 1600.0 14.0 0.005 0.0 110.0 $1M

2 1 1200.0 15.0 0.006 0.0 100.0 $1M

3 3 8500.0 25.0 0.010 0.0 520.0 $1M

4 4 1000.0 30.0 0.012 0.0 200.0 $1M

5 5 5400.0 10.0 0.007 0.0 600.0 $1M

LSE
ID atNode L-00e L-01 L-02 L-03 L-04 L-05 L-06 L-07

1 2 350.00 322.93 305.04 296.02 287.16 291.59 296.02 314.07
2 3 300.00 276.80 261.47 253.73 246.13 249.93 253.73 269.20
3 4 250.00 230.66 217.89 211.44 205.11 208.28 211.44 224.33
ID atNode L-08 L-09 L-10 L-11 L-12 L-13 L-14 L-15

1 2 358.86 394.80 403.82 408.25 403.82 394.80 390.37 390.37
2 3 307.60 338.40 346.13 349.93 346.13 338.40 334.60 334.60
3 4 256.33 282.00 288.44 291.61 288.44 282.00 278.83 278.83
ID atNode L-16 L-17 L-18 L-19 L-20 L-21 L-22 L-23

1 2 408.25 448.62 430.73 426.14 421.71 412.69 390.37 363.46
2 3 349.93 384.53 369.20 365.26 361.47 353.73 334.60 311.53
3 4 291.61 320.44 307.67 304.39 301.22 294.78 278.83 259.61

aTotal number of nodes
bSoft penalty weight π for voltage angle differences
cUpper limit P U

km (in MWs) on the magnitude of real power flow in branch km
dReactance Xkm (in ohms) for branch km
eL-H: Load (in MWs) for hour H, where H=00,01,...,23
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Table 4.4 Dynamic 5-Node Test Case – Action Domain and Learning Input
Data

Action Domain and Learning Parameters

Gen ID M M1 M2 RIMaxL RIMaxU SS q(0) C r e

1 100 10 10 0.75 0.75 0.001 6000 1000 0.04 0.97
2 100 10 10 0.75 0.75 0.001 6000 1000 0.04 0.97
3 100 10 10 0.75 0.75 0.001 6000 1000 0.04 0.97
4 100 10 10 0.75 0.75 0.001 6000 1000 0.04 0.97
5 100 10 10 0.75 0.75 0.001 6000 1000 0.04 0.97

Initial Seed Values for All 20 Runs

RunID InitialSeed RunID InitialSeed RunID InitialSeed

01 695672061 08 324702357 15 -734837588
02 857398845 09 903534301 16 -219860821
03 507304343 10 205753353 17 -845925752
04 748974391 11 -597305450 18 -367413463
05 494375928 12 -494232424 19 -629523701
06 289658396 13 -158932839 20 -257802760
07 158324732 14 -934341230
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Table 4.5 No-Learning Dynamic 5-Node Test Case – Solution Values (SI)
for Real Power Branch Flow Pkm, with Associated Thermal
Limit PU

km, for Each Distinct Branch km

Hour P12
a P14 P15 P23 P34 P45

00 250.00 129.65 -255.77 -100.00 -67.47 -187.82
01 250.00 126.71 -253.27 -72.93 -80.32 -184.27
02 250.00 124.77 -251.61 -55.04 -88.81 -181.93
03 250.00 123.79 -250.77 -46.02 -93.09 -180.74
04 250.00 122.83 -249.95 -37.16 -97.30 -179.58
05 250.00 123.31 -250.36 -41.59 -95.19 -180.16
06 250.00 123.79 -250.77 -46.02 -93.09 -180.74
07 250.00 125.75 -252.45 -64.07 -84.52 -183.11
08 250.00 130.61 -256.60 -108.86 -63.26 -188.98
09 250.00 134.51 -259.92 -144.80 -46.20 -193.69
10 250.00 135.49 -260.76 -153.82 -41.92 -194.87
11 250.00 135.97 -261.17 -158.25 -39.81 -195.45
12 250.00 135.49 -260.76 -153.82 -41.92 -194.87
13 250.00 134.51 -259.92 -144.80 -46.20 -193.69
14 250.00 134.03 -259.51 -140.37 -48.30 -193.11
15 250.00 134.03 -259.51 -140.37 -48.30 -193.11
16 250.00 135.97 -261.17 -158.25 -39.81 -195.45
17 250.00 98.83 -346.76 -198.62 -63.15 -175.88
18 250.00 137.64 -274.17 -180.73 -29.93 -199.96
19 250.00 137.91 -262.83 -176.14 -31.32 -197.80
20 250.00 137.43 -262.42 -171.71 -33.42 -197.22
21 250.00 136.45 -261.58 -162.69 -37.71 -196.03
22 250.00 134.03 -259.51 -140.37 -48.30 -193.11
23 250.00 131.11 -257.02 -113.46 -61.08 -189.58

PU
12 PU

14 PU
15 PU

23 PU
34 PU

45

250.00 150.00 400.00 350.00 240.00 240.00

aIn accordance with the usual convention, the real power Pkm flowing along a branch km is positively valued
if and only if real power is flowing from node k to node m.
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CHAPTER 5. DC OPTIMAL POWER FLOW FORMULATION AND

SOLUTION USING QUADPROGJ

5.1 Abstract

Nonlinear AC Optimal Power Flow (OPF) problems are commonly approximated by lin-

earized DC OPF problems to obtain real power solutions for restructured wholesale power

markets. We first present a standard DC OPF problem, which has the numerically desirable

form of a strictly convex quadratic programming (SCQP) problem when voltage angles are

eliminated by substitution. We next augment this standard DC OPF problem in a physically

meaningful way, still retaining an SCQP form, so that solution values for voltage angles and

locational marginal prices are directly obtained along with real power injections and branch

flows. We then show how this augmented DC OPF problem can be solved using QuadProgJ,

an open-source Java SCQP solver newly developed by the authors that implements the well-

known dual active-set SCQP algorithm by Goldfarb and Idnani (1983). To demonstrate the

accuracy of QuadProgJ, comparative results are reported for a well-known suite of numerical

QP test cases with up to 1500 decision variables plus constraints. Detailed QuadProgJ results

are also reported for 3-node and 5-node DC OPF test cases taken from power systems texts

and ISO-NE/MISO/PJM training manuals.

Keywords: AC optimal power flow, DC OPF approximation, Strictly convex quadratic pro-

gramming, Dual active-set method; Lagrangian augmentation, Java implementation, Quad-

ProgJ, AMES Market Package

JEL Codes: C61, C63, C88
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5.2 Introduction

The standard AC Optimal Power Flow (OPF) problem involves the minimization of total

variable generation costs subject to nonlinear balance, branch flow, and production constraints

for real and reactive power; see Wood and Wollenberg (1996, Chpt. 13). In practice, AC OPF

problems are typically approximated by a more tractable “DC OPF” problem that focuses

exclusively on real power constraints in linearized form.

We first present a standard DC OPF problem in per unit form. This standard problem

can be represented as a strictly convex quadratic programming (SCQP) problem, that is, as

the minimization of a positive definite quadratic form subject to linear constraints. An SCQP

problem can be expressed in matrix form as follows:

Minimize

f(x) =
1
2
xTGx + aTx (5.1)

with respect to

x = (x1,x2, . . . ,xM)T (5.2)

subject to

CT
eqx = beq (5.3)

CT
iqx ≥ biq (5.4)

where G is an M×M symmetric1 positive definite matrix.

As will be clarified below, the solution of this standard DC OPF problem as an SCQP

problem directly provides solution values for real power injections. However, solution values

for locational marginal prices (LMPs), voltage angles, and real power branch flows have to be

recovered indirectly by additional manipulations of these solution values.
1Symmetry is assumed here without loss of generality. Since xT Gx = xT GT x, the matrix G in (5.1) can

always be replaced by the symmetric matrix Ḡ = [G + GT ]/2.
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We next show how this standard DC OPF problem can be augmented in a physically

meaningful way, still retaining an SCQP form, so that solution values for LMPs, voltage angles,

and voltage angle differences are directly recovered along with solution values for real power

injections and branch flows. We then carefully explain how this augmented SCQP problem

can be solved using QuadProgJ, an SCQP solver newly developed by the authors. QuadProgJ

implements the well-known dual active-set SCQP algorithm by Goldfarb and Idnani (1983) and

appears to be the first open-source SCQP solver developed completely in Java. It is designed

for the fast and efficient desktop solution of small to medium-scale SCQP problems for research

and training purposes.

More precisely, we show how the augmented DC OPF problem in SCQP form can be

solved using QuadProgJ optionally coupled with an outer Java shell (DCOPFJ). This outer

shell automatically converts input data from standard SI units to per unit (pu), puts this pu

data into the matrix form required by QuadProgJ, and then converts the pu output back into

SI units. To demonstrate the accuracy of QuadProgJ, we report comparative findings for a

well-known suite of numerical QP test cases with up to 1500 decision variables plus constraints.

As a test of DCOPFJ coupled with QuadProgJ, we also present detailed numerical findings

for illustrative three-node and five-node DC OPF test cases taken from power systems texts

and ISO-NE/MISO/PJM training manuals.

Section 5.3 presents the basic configuration of a restructured wholesale power market op-

erating over an AC transmission grid, making use of a computational framework developed

by the authors in previous studies. Section 5.4 carefully derives a standard DC OPF problem

in per unit form for this wholesale power market and discusses how this standard formulation

can be usefully augmented to enable the direct generation of solution values for LMPs, voltage

angles, voltage angle differences, real power injections, and branch flows. Section 5.5 explicitly

derives and presents a complete matrix SCQP representation for this augmented DC OPF

problem. Section 5.6 illustrates this representation for three-node and five-node DC OPF test

cases.

Section 5.7 then explains how the augmented DC OPF problem in SCQP form can be solved
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using QuadProgJ optionally coupled with the DCOPFJ shell. Section 5.8 reports comparative

QP test case results, and Section 5.9 presents detailed numerical findings for the three-node and

five-node DC OPF test cases. Concluding remarks are given in Section 5.10. Technical notes

on the derivation of AC power flow equations from Ohm’s Law and on the SCQP representation

of the standard DC OPF problem are provided in appendices.

5.3 Configuration of the Wholesale Power Market

Formulation of DC OPF problems for restructured wholesale power markets requires de-

tailed structural information about the transmission grid as well as supply offer and demand

bid information for market participants. This section briefly but carefully describes a compu-

tational framework (“AMES”) previously developed by the authors for the dynamic study of

restructured wholesale power markets. The following Section 5.4 then sets out a standard DC

OPF problem based on this wholesale power market framework.

5.3.1 Overview of the AMES Framework

In April 2003 the U.S. Federal Energy Regulatory Commission proposed a Wholesale Power

Market Platform (WPMP) for common adoption by all U.S. wholesale power markets (FERC,

2003). In a series of previous studies2 we have developed a Java framework modeling a re-

structured wholesale power market operating over an AC transmission grid in accordance with

core features of the WPMP as implemented by the ISO New England in its Standard Market

Design (ISO-NE, 2003).

This framework – referred to as AMES 3 – includes an Independent System Operator (ISO)

and a collection of bulk energy traders consisting of Load-Serving Entities (LSEs) and Gener-

ators distributed across the nodes of the transmission grid.4 In general, multiple Generators
2See Koesrindartoto and Tesfatsion (2004), Koesrindartoto et al. (2005), and Sun and Tesfatsion (2006).
3AMES is an acronym for Agent-based M odeling of E lectricity Systems.
4An Independent System Operator (ISO) is an organization charged with the primary responsibility of main-

taining the security of a power system and often with system operation responsibilities as well. The ISO is
“independent” to the extent that it does not have a conflict of interest in carrying out these responsibilities,
such as an ownership stake in generation or transmission facilities within the power system. A Load-Serving
Entity (LSE) is an electric utility, transmitting utility, or Federal power marketing agency that has an obli-
gation under Federal, State, or local law, or under long-term contracts, to provide electrical power to end-use
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at multiple nodes could be under the control of a single generation company (“GenCo”), and

similarly for LSEs. This control aspect is critically important to recognize for the study of

strategic trading, but it plays no role in the current study.

The AMES ISO undertakes the daily operation of the transmission grid within a two-

settlement system using Locational Marginal Pricing .5 More precisely, at the beginning of

each operating day D the AMES ISO determines hourly power commitments and Locational

Marginal Prices (LMPs)6 for the day-ahead market for day D + 1 based on Generator supply

offers and LSE demand bids (forward financial contracting). Any differences that arise during

day D + 1 between real-time conditions and the contracts cleared and settled in day D for the

day-ahead market for D + 1 are settled by the AMES ISO in the real-time market for D + 1

at real-time LMPs. Transmission grid congestion is managed by the inclusion of congestion

components in LMPs.

As discussed more carefully in Sections 5.3.3 and 5.3.4 below, the current study makes the

usual empirically-based assumption that the daily demand bids of the AMES LSEs exhibit

negligible price sensitivity and hence reduce to daily load profiles. In addition, it is assumed

for notational simplicity that the AMES Generators submit supply offers consisting of their

true marginal cost functions and true production limits (i.e., they do not make strategic offers).

In this case the optimization problem faced by the ISO for each hour of the day-ahead market

reduces to a standard AC OPF problem requiring the minimization of (true) total variable

generation costs subject to balance constraints, branch flow constraints, (true) production

constraints, and given loads. As is commonly done in practice, the AMES ISO approximates

this nonlinear AC OPF problem by means of a DC OPF problem with linearized constraints.

The AMES ISO invokes QuadProgJ through the DCOPFJ shell in order to solve this DC OPF

problem in per unit form.

(residential or commercial) consumers or to other LSEs with end-use consumers. An LSE aggregates individual
end-use consumer demand into “load blocks” for bulk buying at the wholesale level. A Generator is a unit that
produces and sells electrical power in bulk at the wholesale level. A node is a point on the transmission grid
where power is injected or withdrawn.

5Locational Marginal Pricing is the pricing of electrical power according to the location of its withdrawal
from, or injection into, a transmission grid.

6A Locational Marginal Price (LMP) at any particular node of a transmission grid is the least cost of meeting
demand for one additional unit (MW) of power at that node.
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The remainder of this section explains the configuration of the AMES transmission grid

and market participants.

5.3.2 Configuration of the AMES Transmission Grid

The AMES transmission grid is an alternating current (AC) grid modeled as a balanced three-

phase network with N ≥ 1 branches and K ≥ 2 nodes. Reactances on branches are assumed

to be total reactances (rather than per mile reactances), meaning that branch length is already

taken into account. All transformer phase angle shifts are assumed to be zero, all transformer

tap ratios are assumed to be 1, all line-charging capacitances are assumed to be 0, and the

temperature is assumed to remain constant over time.

The AMES transmission grid is assumed to be connected in the sense that it has no isolated

components; each pair of nodes k and m is connected by a linked branch path consisting of one

or more branches. If two nodes are in direct connection with each other, it is assumed to be

through at most one branch, i.e., branch groups are not explicitly considered. However, com-

plete connectivity is not assumed, that is, node pairs are not necessarily in direct connection

with each other through a single branch.

For per unit normalization in DC OPF implementations, it is conventional to specify base

value settings for apparent power (voltampere) and voltage.7 For the AMES transmission

grid, the base apparent power, denoted by So, is assumed to be measured in three-phase

megavoltamperes (MVAs), and the base voltage, denoted by Vo, is assumed to be measured in

line-to-line kilovolts (kVs).

It is also assumed that Kirchoff’s Current Law (KCL) governing current flows in electrical

networks holds for the AMES transmission grid for each hour of operation. As detailed in

Kirschen and Strbac (2004, Section 6.2.2.1), KCL implies that real and reactive power must

each be in balance at each node. Thus, real power must also be in balance across the entire

grid, in the sense that aggregate real power withdrawal plus aggregate transmission losses must

equal aggregate real power injection.
7For a detailed and careful discussion of base value determinations and per unit calculations for power system

applications, see Anderson (1995, Chpt. 1) and Gönen (1988, Chpt. 2).
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In wholesale power markets restructured in accordance with FERC’s proposed WPMP

market design (FERC, 2003), the transmission grid is overlaid with a commercial network

consisting of “pricing locations” for the purchase and sale of electric power. A pricing location

is a location at which market transactions are settled using publicly available LMPs. For

simplicity, it is assumed that the set of pricing locations for AMES coincides with the set of

transmission grid nodes.

5.3.3 Configuration of the AMES LSEs

The AMES LSEs purchase bulk power in the AMES wholesale power market in order to service

customer demand (load) in a downstream retail market. The user specifies the number J of

LSEs as well as the location of these LSEs at various nodes of the transmission grid. LSEs

do not engage in production or sale activities in the wholesale power market. Hence, LSEs

purchase power only from Generators, not from each other.

At the beginning of each operating day D, each AMES LSE j submits a daily load profile

into the day-ahead market for day D + 1. This daily load profile indicates the real power

demand pLj(H) that must be serviced by LSE j in its downstream retail market for each of

24 successive hours H. In the current AMES modeling, the standard assumption is made that

these demands are not price sensitive. One possible interpretation of this price-insensitivity

assumption is that the AMES LSEs are required by retail regulations to service their load

profiles as “native”8 load obligations, and that the profit (revenues net of costs) received by

LSEs for servicing these load obligations is regulated to be a simple dollar mark-up over cost

that is independent of the cost level. Under these conditions, LSEs have no incentive to submit

price-sensitive demand bids into the day-ahead market.

5.3.4 Configuration of the AMES Generators

The Ames Generators are electric power generating units. The user specifies the number I of

Generators as well as the location of these Generators at various nodes of the transmission
8Native load customers for an LSE are customers whose power needs the LSE is obliged to meet by statute,

franchise, regulatory requirement, or contract.
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grid. Generators sell power only to LSEs, not to each other.

Each AMES Generator is user-configured with technology, endowment, and learning at-

tributes. Only the technology attributes are relevant for the current study. With regard to the

latter, it is assumed that each Generator has variable and fixed costs of production. However,

Generators do not incur no-load, startup, or shutdown costs, and they do not face ramping

constraints.9

More precisely, the technology attributes assumed for each Generator i take the following

form. Generator i has minimum and maximum capacities for its hourly real power production

level pGi (in MWs), denoted by pL
Gi and pU

Gi, respectively.10 That is, for each i,

pL
Gi ≤ pGi ≤ pU

Gi (5.5)

In addition, Generator i has a total cost function giving its total costs of production per hour

for each hourly production level p. This total cost function takes the form

TCi(p) = ai · p + bi · p2 + FCosti (5.6)

where ai ($/MWh), bi ($/MW2h), and FCosti ($/h) are exogenously given constants. Note

that TCi(p) is measured in dollars per hour ($/h). Generator i’s total variable cost function

and (prorated) fixed costs for any feasible hourly production level p are then given by

TVCi(p) = TCi(p)− TCi(0) = ai · p + bi · p2 (5.7)

and

FCosti = TCi(0) (5.8)
9As is standard in economics, variable costs are costs that vary with the level of production, and fixed costs

are costs such as debt and equity obligations associated with plant investments that are not dependent on the
level of production and that are incurred even if production ceases. As detailed by Kirschen and Strbac (2004,
Section 4.3), the concept of no-load costs in power engineering refers to quasi-fixed costs that would be incurred
by Generators if they could be kept running at zero output but that would vanish once shut-down occurs. Startup
costs are costs specifically incurred when a Generator starts up, and shutdown costs are costs specifically incurred
when a Generator shuts down. Finally, ramping constraints refer to physical restrictions on the rates at which
Generators can increase or decrease their outputs.

10In the current AMES modeling, the lower production limit pL
Gi for each Generator i is interpreted as a firm

“must run” minimum power production level. That is, if pL
Gi is positive, then shutting down Generator i is

not an option for the AMES ISO. Consequently, for most applications of AMES, these lower production limits
should be set to zero.
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respectively. Finally, the marginal cost function for Generator i takes the form

MCi(p) = ai + 2 · bi · p (5.9)

At the beginning of each operating day D, each Generator i submits a supply offer into the

day-ahead market for use in each hour H of day D+1. This supply offer consists of a reported

marginal cost function defined over a reported feasible production interval. In general, this

supply offer could be strategic in the sense that the reported marginal cost function deviates

from Generator i’s true marginal cost function MCi(p) and the reported feasible production

interval differs from Generator i’s true feasible production interval [pL
Gi, pU

Gi]. For the purposes

of this paper, however, it can be assumed without loss of generality that each Generator i

reports its true marginal cost function and its true feasible production interval.11

5.4 DC OPF Problem Formulation

A DC OPF problem is an approximation for an underlying AC OPF problem under several

simplifying restrictions regarding voltage magnitudes, voltage angles, admittances, and reactive

power. To lessen the chances of numerical instability, the variables appearing in the resulting

DC OPF problem are commonly expressed in normalized per unit (pu) values so that the

magnitudes of these variables are more nearly equal to each other.12 In Section 5.4.1 we briefly

but carefully outline the manner in which a standard DC OPF problem expressed in pu values

is derived from an underlying AC OPF problem expressed in standard SI (International System

of Units).

Using the results of Section 5.4.1, we then derive in Section 5.4.2 a standard DC OPF

problem in full structural pu form for the AMES wholesale power market set out in Section 5.3.

In particular, we show that this problem can be expressed as a strictly convex quadratic
11Thus, the Generators’ supply offers take the form of linear upward-sloping supply curves. As detailed in

Sun and Tesfatsion (2006), this representation for supply offers greatly facilitates the modeling of Generator
learning. In the actual ISO-NE wholesale power market, Generators submit their supply offers in the form
of step functions defined over their feasible production intervals, but they can check a “UseOfferSlope” box
permitting the ISO to approximate these step functions by smooth curves.

12As will be clarified in subsequent sections, QuadProgJ can directly accept DC OPF variable inputs expressed
in pu form so that all internal calculations are carried out in pu terms. Alternatively, as explained in Section 5.7,
QuadProgJ can be coupled with an outer DCOPFJ shell that automatically converts wholesale power market
variables from standard SI to per unit form prior to invoking QuadProgJ.
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programming (SCQP) problem once voltage angles are eliminated by substitution from the

problem constraints. An SCQP formulation is highly desirable from the standpoint of stable

numerical solution. Unfortunately, this voltage angle substitution eliminates the nodal balance

constraints and hence the ability to directly generate solution values for LMPs, which by

definition are the shadow prices for the nodal balance constraints.

Consequently, in Sections 5.4.3 and 5.4.4 we develop an alternative version of this standard

DC OPF problem in pu form making use of a physically meaningful Lagrangian augmentation.

This augmented DC OPF problem directly generates solution values for LMPs, voltage angles,

and voltage angle differences as well as real power injections and branch flows while still

retaining a numerically desirable SCQP form.

5.4.1 From AC OPF to DC OPF Per Unit

Conversion of an AC OPF problem to a DC OPF approximation in per unit form requires

careful attention to variable conversions in both the problem constraints and the problem

objective function. Here we first consider constraint conversions and then take up the needed

conversions for the objective function.

The key constraints in an AC OPF problem that are simplified in a DC OPF approximation

are the representations for real and reactive power branch flows. Let km denote a branch that

connects nodes k and m with k 6= m. Let Pkm (in MWs) denote the real power branch flow

for km, and let Qkm (in MVARs) denote the reactive power branch flow for km. Let Vk and

Vm denote the voltage magnitudes (in kVs) at nodes k and m, and let δk and δm denote the

voltage angles (in radians) at nodes k and m. Finally, let gkm and bkm denote the conductance

and the susceptance (in mhos) for branch km.13

Given these notational conventions, Pkm and Qkm (k 6= m) can be expressed as follows:14

Pkm = V 2
k gkm − VkVm[gkm cos(δk − δm) + bkm sin(δk − δm)] (5.10)

13Impedance takes the complex form z = r +
√
−1 x, where r (in ohms) denotes resistance and x (in ohms)

denotes reactance. Admittance (the inverse of impedance) then takes the complex form y = g +
√
−1 b, where

the conductance is given by g = r/[r2 + x2] (in mhos) and the susceptance is given by b = −x/[r2 + x2] (in
mhos).

14See Appendix A for a rigorous derivation of these power flow equations from Ohm’s Law.
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Qkm = − V 2
k bkm − VkVm[gkm sin(δk − δm)− bkm cos(δk − δm)] (5.11)

The three basic assumptions used to derive a DC OPF approximation from an underlying

AC OPF problem are as follows (c.f. Kirschen and Strabac, 2004, p. 186, and McCalley, 2006):

[A1] The resistance rkm for each branch km is negligible compared to the reactance xkm

and can therefore be set to 0.

[A2] The voltage magnitude at each node is equal to the base voltage Vo.

[A3] The voltage angle difference δk − δm across any branch km is sufficiently small in

magnitude so that cos(δk − δm) ≈ 1 and sin(δk − δm) ≈ [δk − δm].

Given assumption [A1], it follows that gkm = 0 and bkm = [−1/xkm], where xkm denotes

the reactance (in ohms) for branch km. Thus, Pkm = VkVm[1/xkm] sin(δk − δm) and Qkm =

V 2
k [1/xkm]−VkVm[1/xkm] cos(δk−δm). Adding assumption [A2], Pkm = V 2

o [1/xkm] sin(δk−δm)

and Qkm = V 2
o [1/xkm]− V 2

o [1/xkm] cos(δk − δm). Finally, adding assumption [A3],

Pkm = V 2
o · [1/xkm] · [δk − δm] (5.12)

and the reactive power branch flow Qkm in equation (5.11) reduces to Qkm = V 2
o [1/xkm] −

V 2
o [1/xkm] · 1 = 0.

As detailed in Anderson (1995, Chpt. 1) and Gönen (1988, Chpt. 2), any quantity in an

electrical network can be converted to a dimensionless pu quantity by dividing its numerical

value by a base value of the same dimension. In power system calculations, only two base

values are needed; and these are usually taken to be base voltage and base apparent power

(voltampere). Assuming a balanced three-phase network with a base voltage Vo measured

in line-to-line kVs and a base apparent power So measured in three-phase MVAs, the base

impedance Zo (in ohms) is specified to be

Zo = V 2
o /So (5.13)
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Given Zo, the pu reactance xkm for branch km is defined to be

xkm pu = xkm/Zo (5.14)

Note that xkm pu is a dimensionless quantity. Using assumption [A3], the pu susceptance bkm

for branch km is given by

bkm pu = − 1/[xkm pu] (5.15)

Also, the pu real power branch flow Fkm for branch km is given by

Fkm = Pkm/So (5.16)

Now divide each side of the real power branch flow equation (5.12) by the base apparent

power So. Also, let Bkm denote the negative of the susceptance pu on branch km. That is,

define

Bkm = − bkm pu = [1/xkm pu] (5.17)

It then follows from equations (5.13) through (5.17) that the real power branch flow equation

(5.12) can be expressed in the following simple linear pu form commonly seen in power systems

textbooks:

Fkm = Bkm[δk − δm] (5.18)

As will be clarified below, an additional change of variables needed to express the DC OPF

problem in pu terms is to everywhere divide real power quantities by base apparent power So.

Thus, for example, the real power pGi injected by each Generator i is expressed in pu terms as

PGi = pGi/So (5.19)

and the real power load pLj withdrawn by each LSE j is expressed in pu terms as

PLj = pLj/So (5.20)
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The objective function for the DC OPF problem must be expressed in pu terms as well as

the constraints. Thus, the total cost function and variable cost function defined in Section 5.3.4

for each Generator i are expressed as a function of pu real power PGi as follows:

TCi(PGi) = Ai · PGi + Bi · P 2
Gi + FCosti (5.21)

TVCi(PGi) = Ai · PGi + Bi · P 2
Gi (5.22)

where Ai ($/h) and Bi ($/h) are pu-adjusted cost coefficients defined by

Ai = aiSo (5.23)

Bi = biS
2
o (5.24)

Note that the pu-adjusted cost functions TCi(PGi) and TVCi(PGi) are still measured in dollars

per hour ($/h).

Finally, as usual, one node needs to be selected as the reference node with a specified

voltage angle. For concreteness, we make the following assumption:

[A4] Node 1 is the reference node with voltage angle normalized to 0.

5.4.2 Standard DC OPF in Structural PU Form

This subsection sets out a standard DC OPF problem for the AMES wholesale power

market in full structural pu form, making use of the developments in Section 5.4.1. It is then

seen that this standard problem can be expressed in numerically desirable SCQP form if the

voltage angles are eliminated by substitution from the problem constraints.

For easy reference, the admissible exogenous variables and endogenous variables used in

the standard DC OPF formulation are gathered together in Tables 5.1 and 5.2, respectively.

These variable definitions will be used throughout the remainder of this study.

Given the variable definitions in Tables 5.1 and 5.2, the standard DC OPF problem for the

AMES wholesale power market formulated in pu terms is as follows:

Minimize
I∑

i=1

[AiPGi + BiP
2
Gi] (5.25)
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Table 5.1 DC OPF Admissible Exogenous Variables Per Unit

Variable Description Admissibility Restrictions

K Total number of transmission grid nodes K > 0

N Total number of distinct network branches N > 0

I Total number of Generators I > 0

J Total number of LSEs J > 0

Ik Set of Generators located at node k Card(∪K
k=1Ik) = I

Jk Set of LSEs located at node k Card(∪K
k=1Jk) = J

So Base apparent power (in three-phase MVAs) So ≥ 1

Vo Base voltage (in line-to-line kVs) Vo > 0

Vk Voltage magnitude (in kVs) at node k Vk = Vo, k = 1, . . . ,K

PLj Real power load (pu) withdrawn by LSE j PLj ≥ 0, j = 1, . . . , J

km Branch connecting nodes k and m (if one exists) k 6= m

BR Set of all distinct branches km, k < m BR 6= ∅
xkm Reactance (pu) for branch km xkm = xmk > 0, km ∈ BR

Bkm [1/xkm] for branch km Bkm = Bmk > 0, km ∈ BR

FU
km Thermal limit (pu) for real power flow on km FU

km > 0, km ∈ BR

δ1 Reference node 1 voltage angle (in radians) δ1 = 0

PL
Gi Lower real power limit (pu) for Generator i PL

Gi ≥ 0, i = 1, . . . , I

PU
Gi Upper real power limit (pu) for Generator i PU

Gi > 0, i = 1, . . . , I

Ai, Bi Cost coefficients (pu adjusted) for Generator i Bi > 0, i = 1, . . . , I

FCosti Fixed costs (hourly prorated) for Generator i FCosti ≥ 0, i = 1, . . . I

MCi(P ) MCi(P ) = Ai + 2BiP = Generator i’s MC function MCi(PL
Gi) ≥ 0, i = 1, . . . I

with respect to

PGi, i = 1, ..., I; δk, k = 1, ...,K

subject to:

Real power balance constraint for each node k = 1, ...,K:

0 = PLoadk − PGenk + PNetInjectk (5.26)

where
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Table 5.2 DC OPF Endogenous Variables Per Unit

Variable Description

PGi Real power injection (pu) by Generator i = 1, . . . , I

δk Voltage angle (in radians) at node k = 2, . . . ,K

Fkm Real power (pu) flowing in branch km ∈ BR

PGenk Total real power injection (pu) at node k = 1, . . . ,K

PLoadk Total real power withdrawal (pu) at node k = 1, . . . ,K

PNetInjectk Total net real power injection (pu) at node k = 1, . . . ,K

PLoadk =
∑
j∈Jk

PLj (5.27)

PGenk =
∑
i∈Ik

PGi (5.28)

PNetInjectk =
∑

km ormk∈BR

Fkm (5.29)

Fkm = Bkm [δk − δm] (5.30)

Real power thermal constraint for each branch km ∈ BR:

|Fkm| ≤ FU
km (5.31)

Real power production constraint for each Generator i = 1, .., I:

PL
Gi ≤ PGi ≤ PU

Gi (5.32)

Voltage angle setting at reference node 1:

δ1 = 0 (5.33)
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As it stands, this standard DC OPF problem in pu form is a positive semi-definite quadratic

programming problem. To see this, recall the general matrix form of a quadratic programming

problem depicted in Section 5.2. The objective function (5.25) expressed in the quadratic form

(5.1) with x = (PG1, . . . , PGI , δ1, . . . , δK)T entails a diagonal matrix G with positive entries in

its first I diagonal elements corresponding to the real power injections PGi but zeroes in its

remaining K diagonal elements corresponding to the voltage angles δk, implying that G is a

positive semi-definite matrix.

As shown in Appendix B, it is possible to use the nodal balance constraints (5.26) for

k = 2, . . . ,K together with the normalization constraint (5.33) to express the voltage angle

vector (δ2, . . . , δK) as a linear affine function of the real power injection vector (PG1, . . . , PGI).

Using this relation to everywhere eliminate the voltage angles does result in a numerically

more desirable SCQP problem. Unfortunately, this voltage angle elimination also prevents the

direct determination of solution values for LMPs since, by definition, the LMPs are the shadow

prices for the nodal balance constraints.

The following subsection develops a simple physically meaningful augmentation of the stan-

dard DC OPF objective function that permits direct generation of optimal LMPs and voltage

angle solutions while retaining a numerically desirable SCQP form.

5.4.3 Augmentation of the Standard DC OPF Problem

Consider the following augmentation of the standard DC OPF objective function (5.25)

with a soft penalty function on the sum of the squared voltage angle differences:

I∑
i=1

[AiPGi + BiP
2
Gi] + π

[ ∑
km∈BR

[δk − δm]2
]

(5.34)

As demonstrated carefully in Section 5.5 below, this augmentation transforms the standard

DC OPF problem into an SCQP problem that can be used to directly generate solution values

for LMPs and voltage angles as well as real power injections and branch flows, a clear benefit.

However, this augmentation also has two additional potential benefits based on physical and

mathematical considerations:
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• Physical Considerations: The augmentation provides a way to conduct sensitivity experi-

ments on the size of the voltage angle differences that could be informative for estimating

the size and pattern of AC-DC approximation errors.

• Mathematical Considerations: The augmentation could help to improve the numerical

stability and convergence properties of any applied solution method.

On the other hand, the augmentation would also seem to come with a potential cost. Specifi-

cally, could it cause significant distortions in the standard DC OPF solution values?

This subsection takes up each consideration in turn. The bottom line, supported by experi-

mental evidence, is that solution distortions appear to be practically controllable to arbitrarily

small levels through appropriately small settings of the soft penalty weight π. Consequently,

the benefits of augmentation would seem to strongly outweigh the costs.

5.4.3.1 Potential Benefits Based on Physical Considerations

The standard DC OPF problem in pu form set out in Section 5.4.2 requires the minimization

of total variable costs subject to a set of linearized constraints. As detailed in Section 5.4.1,

this pu form relies on the four simplifying assumptions [A1] through [A4]. In particular, the

linear form of the branch flow constraints relies on assumption [A3] asserting that voltage angle

differences across branches remain small.

Consequently, small voltage angle differences is the basis upon which a DC approxima-

tion to a true underlying AC OPF problem is formulated. Nevertheless, the standard DC

OPF problem does not constrain voltage angle differences apart from the constraints imposed

through branch flow limits, a conceptually distinct type of constraint motivated in terms of the

physical attributes of transmission lines. If the presumption of small voltage angle differences

is violated, the errors induced by reliance on a DC approximation could become unacceptably

large.

Much remains to be done regarding how small is small enough for voltage angle differences in

order to achieve satisfactory DC OPF approximations not only for AC OPF quantity solutions

(real power injections and branch flows) but also for AC OPF price solutions (the LMP at each



www.manaraa.com

197

node). We have only been able to find one study of this issue (Overbye et al., 2004) that takes

both quantity and price solutions into account. The conclusions reached by the authors on the

basis of two case studies are cautiously optimistic with regard to quantity solutions. However,

as the authors note, the LMPs are determined by the binding branch flow constraints, hence

small branch flow changes causing changes in the binding branch flow constraints can have

discrete and potentially large impacts on LMP solutions. For example, in the authors’ second

case study, the DC approximation missed almost 50% of the binding constraints for the AC

problem. Although many of these were “near misses,” the effects of these near-misses on the

LMP approximations were in some cases significant.

For these reasons, it would seem prudent to pay close attention to the sizes of the voltage

angle differences when undertaking DC OPF approximations to AC OPF problems. DC solu-

tions obtained with large voltage angle differences could diverge significantly from AC solutions,

thus giving misleading signals - particularly price signals – for the operation of restructured

wholesale power markets.

Introducing a soft penalty function on voltage angle differences permits sensitivity checks

to be conducted to determine the sensitivity of DC OPF solutions to impositions of this pre-

condition for AC-DC approximation. Ideally, the DC OPF solutions obtained with sufficiently

small soft penalty weights π should reproduce the DC OPF solutions obtained in the absence

of any soft penalty imposition, as a baseline for comparison. This is indeed seen to be the case

in the numerical π sensitivity results reported in Section 5.9.4.

5.4.3.2 Potential Benefits Based on Mathematical Considerations

As is well known, numerical stability and convergence properties of nonlinear programming

problems with minimization (maximization) objectives can often be enhanced by increasing

the convexity (concavity) of their objective functions through suitable augmentations.

For example, the Fortran package ZQPCVX developed by Powell (1983) for convex QP

minimization problems includes a simple artificial augmentation to induce strict convexity.

Specifically, the matrix diagonal of the positive semi-definite quadratic form representing the
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nonlinear part of the objective function is augmented with positively-valued constants to in-

duce positive definiteness. More generally, Shahidehpour et al. (2002, Appendix B.2) discuss

an entire class of artificial augmentations suitable for nonlinear programming problems with

inequality constraints. The authors use versions of these augmentations on pages 288-289 and

elsewhere in their text to improve the convexity (hence the convergence properties) of various

types of optimization problems arising for electric power systems.

Although artificial augmentations can work well to ensure stability and convergence, they

do not provide meaningful sensitivity information for the physical problem at hand. Happily,

as explained above, a physically meaningful augmentation is available for the standard DC

OPF problem that accomplishes strict convexification of the objective function with several

important side benefits.

5.4.3.3 Potential Costs in Terms of Solution Distortions

In Section 5.9.4 we report findings for extensive tests conducted with 3-node and 5-node DC

OPF problems to check the extent to which the soft penalty function augmentation affects

standard DC OPF solution values. To briefly summarize, these findings indicate that the

effects of this augmentation on the resulting solution values are negligible for a sufficiently

small setting of the soft penalty weight π. Moreover, no numerical instability or convergence

problems were detected for any of the tested π values.

5.4.4 Augmented DC OPF in Reduced PU Form

The augmented DC OPF problem in structural pu form obtained by replacing the stan-

dard DC OPF objective function (5.25) by the augmented objective function (5.34) can be

compactly represented in the following reduced form:

Minimize
I∑

i=1

[AiPGi + BiP
2
Gi] + π

 ∑
1m∈BR

δ2
m +

∑
km∈BR, k≥2

[δk − δm]2

 (5.35)
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with respect to

PGi, i = 1, ..., I; δk, k = 2, ...,K

subject to:

Real power balance constraint for each node k = 1, ...,K (with δ1 ≡ 0):

∑
i∈Ik

PGi −
∑

km ormk∈BR

Bkm[δk − δm] =
∑
j∈Jk

PLj (5.36)

Real power thermal constraints for each branch km ∈ BR (with δ1 ≡ 0):

−Bkm[δk − δm] ≥ − FU
km (5.37)

Bkm[δk − δm] ≥ − FU
km (5.38)

Real power production constraints for each Generator i = 1, .., I:

PGi ≥ PL
Gi (5.39)

−PGi ≥ − PU
Gi (5.40)

5.5 Augmented DC OPF in SCQP Form

As a preliminary step towards a SCQP depiction for the augmented DC OPF problem in

reduced pu form presented in Section 5.4.4, it is useful to introduce some notational conventions

to simplify the exposition. The next two subsections develop matrix representations for the

objective function and constraints. The final subsection then presents the complete SCQP

depiction in a matrix form suitable for QuadProgJ solution.
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5.5.1 Objective Function Depiction

Consider, first, the development of a quadratic form representation for the soft penalty

function applied to voltage angle differences in the augmented DC OPF objective function

(5.35). As detailed in Section 5.3.2, care must be taken in this representation to account for

the possible lack of direct branch connections between nodes.

To this end, define the branch connection matrix E as follows:

E =



0 I(1 ↔ 2) I(1 ↔ 3) · · · I(1 ↔ K)

I(2 ↔ 1) 0 I(2 ↔ 3) · · · I(2 ↔ K)

I(3 ↔ 1) I(3 ↔ 2) 0 · · · I(3 ↔ K)
...

...
...

. . .
...

I(K ↔ 1) I(K ↔ 2) I(K ↔ 3) · · · 0


K×K

(5.41)

where I(·) is an indicator function defined as:

I(k ↔ m) =

 1 if either km or mk ∈ BR

0 otherwise

Since I(k ↔ m) = I(m ↔ k) for all k and m, it follows that Ekm = Emk for all k and m. Thus,

E is a symmetric matrix.

Using this indicator function construct, the number N of distinct transmission grid branches

can be determined as follows:

N =

 K∑
k,m=1

I(k ↔ m)

 /2 (5.42)

If the transmission grid is completely connected, then N = K[K − 1]/2.

Next, define the (voltage angle difference) weight matrix W(K) as
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W(K) = 2π



∑
k 6=1 Ek1 −E12 −E13 · · · −E1K

−E21
∑

k 6=2 Ek2 −E23 · · · −E2K

−E31 −E32
∑

k 6=3 Ek3 · · · −E3K

...
...

...
. . .

...

−EK1 −EK2 −EK3 · · ·
∑

k 6=K EkK


K×K

(5.43)

For example, in the special case of a completely connected grid, the weight matrix W(K) takes

the form

W(K) = 2π



K − 1 −1 −1 · · · −1

−1 K − 1 −1 · · · −1

−1 −1 K − 1 · · · −1
...

...
...

. . .
...

−1 −1 −1 · · · K − 1


K×K

(5.44)

Let δ(K)T = [δ1 . . . δK ] denote an arbitrary K-dimensional voltage angle vector with at least

one non-zero element. For K = 2 it is easily verified that

1
2

δ(2)TW(2)δ(2) = π [δ1 − δ2]
2 = π

[ ∑
km∈BR

[δk − δm]2
]

> 0 (5.45)

Consequently, W(2) is a symmetric positive definite matrix. A simple induction argument on

K then establishes that W(K) is a symmetric positive definite matrix for arbitrary K ≥ 2.

Now suppose δ1 ≡ 0 and δk 6= 0 for some k = 2, . . . ,K, and let δT
−1(K) = [δ2 . . . δK ]. Also,

let Wrr(K) denote the reduced weight matrix constructed from W(K) by deleting its first row

and its first column as follows:

Wrr(K) = 2π



∑
k 6=2 Ek2 −E23 · · · −E2K

−E32
∑

k 6=3 Ek3 · · · −E3K

...
...

. . .
...

−EK2 −EK3 · · ·
∑

k 6=K EkK


(K−1)×(K−1)

(5.46)
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It is then easily shown by a simple induction argument that

1
2

δ(K)TW(K)δ(K) =
1
2

δ−1(K)TWrr(K)δ−1(K) (5.47)

= π

 ∑
1m∈BR

δ2
m +

∑
km∈BR, k≥2

[δk − δm]2

 > 0

Consequently, Wrr(K) is a symmetric positive definite matrix whose quadratic form expresses

the soft penalty term in the augmented DC OPF objective function (5.35). For expositional

simplicity, the dimension argument K for this matrix will hereafter be suppressed.

Let the Generators’ cost attribute matrix U be defined as

U = diag[ 2B1, 2B2, · · · , 2BI ] =



2B1 0 · · · 0

0 2B2 · · · 0
...

...
. . .

...

0 0 · · · 2BI


I×I

(5.48)

Recalling from Table 5.1 that the Generator cost coefficients Bi are assumed to be strictly

positive, it is easily seen that U is a symmetric positive definite matrix.

Finally, let the matrix G be defined by

G = blockDiag
[

U Wrr

]
=

 U 0

0 Wrr


(I+K−1)×(I+K−1)

(5.49)

The matrix G is clearly symmetric. Moreover, G is positive definite since its associated

quadratic form maps any vector xT = [PG1, . . . , PGI , δ2, . . . , δK ] with at least one non-zero

component into a strictly positive scalar. That is,

1
2
xTGx =

I∑
i=1

[BiP
2
Gi] + π

 ∑
1m∈BR

δ2
m +

∑
km∈BR, k≥2

[δk − δm]2

 > 0 (5.50)

In particular, comparing (5.50) with (5.35), it is seen that (5.50) provides a positive definite

quadratic form representation for the nonlinear terms in the augmented DC OPF objective

function.
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5.5.2 Constraint Depiction

The main factor complicating the matrix representation of the constraints for the aug-

mented DC OPF problem is, once again, the need to allow for the possible absence of direct

branch connections between nodes. This subsection derives special matrices to facilitate this

constraint representation.

Let the definition (5.17) for Bkm be extended for all k 6= m as follows:

Bkm =


1

xkm pu > 0 if km or mk ∈ BR

0 otherwise

Since xkm pu = xmk pu for all km ∈ BR, it follows that Bkm = Bmk for all k 6= m. Using this

definition for Bkm, construct the bus admittance matrix B′ as follows:

B′ =



∑
k 6=1 Bk1 −B12 −B13 · · · −B1K

−B21
∑

k 6=2 Bk2 −B23 · · · −B2K

−B31 −B32
∑

k 6=3 Bk3 · · · −B3K

...
...

...
. . .

...

−BK1 −BK2 −BK3 · · ·
∑

k 6=K BkK


K×K

(5.51)

The reduced bus admittance matrix B′
r consisting of B′ with its first row omitted then takes

the following form:

B′
r =



−B21
∑

k 6=2 Bk2 −B23 · · · −B2K

−B31 −B32
∑

k 6=3 Bk3 · · · −B3K

...
...

...
. . .

...

−BK1 −BK2 −BK3 · · ·
∑

k 6=K BkK


(K−1)×K

(5.52)

Let BI denote the listing of the N distinct branches km ∈ BR constituting the transmission

grid, lexicographically sorted as in a dictionary from lower to higher numbered nodes. Let BIn

denote the nth branch listed in BI. Then the adjacency matrix A with entries of 1 for the

“from” node and −1 for the “to” node can be expressed as follows:
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A =



J(1,BI1) J(2,BI1) · · · J(K,BI1)

J(1,BI2) J(2,BI2) · · · J(K,BI2)
...

...
. . .

...

J(1,BIN ) J(2,BIN ) · · · J(K,BIN )


N×K

(5.53)

where J(·) is an indicator function defined as:

J(i,BIn) =


+1 if BIn takes the form ij ∈ BR for some node j > i

−1 if BIn takes the form ji ∈ BR for some node j < i

0 otherwise

for all nodes i = 1, ...,K and for all branches n = 1, ..., N

Let the reduced adjacency matrix Ar be defined as A with its first column deleted. Thus, Ar

is expressed as

Ar =



J(2,BI1) · · · J(K,BI1)

J(2,BI2) · · · J(K,BI2)
...

. . .
...

J(2,BIN ) · · · J(K,BIN )


N×(K−1)

(5.54)

Also, define the matrix II by

II =



I(1 ∈ I1) I(2 ∈ I1) · · · I(I ∈ I1)

I(1 ∈ I2) I(2 ∈ I2) · · · I(I ∈ I2)
...

...
. . .

...

I(1 ∈ IK) I(2 ∈ IK) · · · I(I ∈ IK)


K×I

(5.55)

where

I(i ∈ Ik) =

 1 if i ∈ Ik

0 if i /∈ Ik

for each i = 1, . . . , I and k = 1, . . . ,K. Finally, define the matrix D to be the diagonal matrix

whose diagonal entries give the Bkm values for all distinct connected branches km ∈ BR

ordered as in BI. That is, with some slight abuse of notation:
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D = diag
[

D1 D2 · · · DN

]
N×N

(5.56)

where Dn = Bkm if BIn (the nth element of BI) corresponds to branch km ∈ BR.15

5.5.3 The Complete SCQP Depiction

Using the notation from Sections 5.5.1 and 5.5.2, the complete SCQP depiction for the

augmented DC OPF problem in reduced pu form set out in Section 5.4.4 can be expressed as

follows:

Minimize

f(x) =
1
2
xTGx + aTx (5.57)

with respect to

x =
[

PG1 . . . PGI δ2 . . . δK

]T
(I+K−1)×1

subject to

CT
eqx = beq (5.58)

CT
iqx ≥ biq (5.59)

In this SCQP depiction, the symmetric positive definite matrix G is defined as in (5.49), and

the vector aT is given by

aT =
[

A1 · · · AI 0 · · · 0

]
1×(I+K−1)

The equality constraint matrix CT
eq takes the form:

15Note that the matrix H ≡ DAr maps the vector δ = (δ2, . . . , δK)T of voltage angles into the N × 1 real
power branch flow vector F ≡ Hδ. Also, as established in Appendix B, PInject = B′

rrδ, where PInject denotes
the (K−1)×1 vector of net nodal real power injections PNetInjectk, k = 2, . . . , K, and B′

rr denotes the matrix
B′ in (5.51) with its first row and first column eliminated (corresponding to the reference node 1). Defining the
shift matrix S ≡ H[B′

rr]
−1, it follows that F = SPInject. Compare CAISO (2003, pp. 24-25).
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CT
eq =

[
II −B

′T
r

]
K×(I+K−1)

where B′
r is defined as in (5.52) and II is defined as in (5.55). The associated equality constraint

vector beq takes the form:

beq =
[ ∑

j∈J1
PLj

∑
j∈J2

PLj · · ·
∑

j∈JK
PLj

]T
K×1

Finally, consider the inequality constraint matrix Ciq. This matrix can be decomposed

into several column-wise submatrices corresponding to the thermal constraints (5.37) (call

it Ct1), the thermal constraints (5.38) (call it Ct2), the lower production constraints (5.39)

(call it CpL), and the upper production constraints (5.40) (call it CpU). Note, further, that

Ct1 = −Ct2 and CpL = −CpU. For easier notation, let Ct ≡ Ct1 and Cp ≡ CpL. The

inequality constraint constraint matrix Ciq can then be expressed as follows:

Ciq =
[

Ct −Ct Cp −Cp

]
(I+K−1)×(2N+2I)

or

CT
iq =

[
CT

t −CT
t CT

p −CT
p

]T
(2N+2I)×(I+K−1)

In this expression,

CT
t =

[
Ot −DAr

]
N×(I+K−1)

where Ot is an N × I zero matrix, Ar is defined as in (5.54), and D is defined as in (5.56).

Also,

CT
p =

[
Ip Op

]
I×(I+K−1)

where Ip is an I × I identity matrix and Op is an I × (K − 1) zero matrix. Putting all these

terms together, one has:
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CT
iq =



Ot −DAr

−Ot DAr

Ip Op

−Ip −Op


(2N+2I)×(I+K−1)

Finally, the associated inequality constraint vector biq can be similarly decomposed as

follows:

biq =
[

bt bt bpL bpU

]T
(2N+2I)×1

where

bt =
[
−FU

BI1
−FU

BI2
· · · −FU

BIN

]T
N×1

bpL =
[

PL
G1 PL

G2 · · · PL
GI

]T
I×1

bpU =
[
−PU

G1 −PU
G2 · · · −PU

GI

]T
I×1

5.6 Illustrative Examples

5.6.1 A Three-Node Illustration

Consider the special case of a completely connected transmission grid consisting of three nodes

{1, 2, 3}, three Generators, and three LSEs, with Generator k and LSE k located at node k for

k = 1, 2, 3. This three-node case is depicted in Figure 5.1.

For this three-node case, the augmented DC OPF problem set out in Section 5.4.4 reduces

to the following form:

Minimize
3∑

i=1

[AiPGi + BiP
2
Gi] + πδ2

2 + πδ2
3 + π[δ2 − δ3]2 (5.60)
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Figure 5.1 A Three-Node Transmission Grid

with respect to

PG1, PG2, PG3, δ2, δ3

subject to:

Real power balance constraint for each node k = 1, ...,3:

PG1 + B12δ2 + B13δ3 = PL1 (5.61)

PG2 − [B12 + B23]δ2 + B23δ3 = PL2 (5.62)

PG3 + B23δ2 − [B13 + B23]δ3 = PL3 (5.63)

Real power thermal constraints for each branch km ∈ BR:

B12δ2 ≥ −FU
12 (5.64)
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B13δ3 ≥ −FU
13 (5.65)

−B23δ2 + B23δ3 ≥ −FU
23 (5.66)

−B12δ2 ≥ −FU
12 (5.67)

−B13δ3 ≥ −FU
13 (5.68)

B23δ2 −B23δ3 ≥ −FU
23 (5.69)

Real power production constraints for each Generator i = 1, ...,3:

PG1 ≥ PL
G1 (5.70)

PG2 ≥ PL
G2 (5.71)

PG3 ≥ PL
G3 (5.72)

−PG1 ≥ −PU
G1 (5.73)

−PG2 ≥ −PU
G2 (5.74)

−PG3 ≥ −PU
G3 (5.75)

Using the notation introduced in Section 5.5, the SCQP depiction for this three-node case

is as follows:



www.manaraa.com

210

Minimize

f(x) =
1
2
xTGx + aTx (5.76)

with respect to

x = [PG1, PG2, PG3, δ2, δ3]
T
(5×1) (5.77)

subject to

CT
eqx = beq (5.78)

CT
iqx ≥ biq (5.79)

where

G =



2B1 0 0 0 0

0 2B2 0 0 0

0 0 2B3 0 0

0 0 0 4π −2π

0 0 0 −2π 4π


(5×5)

aT =
[

A1 A2 A3 0 0

]
(1×5)

CT
eq =


1 0 0 B12 B13

0 1 0 −[B12 + B23] B23

0 0 1 B23 −[B13 + B23]


(3×5)

beq =
[

PL1 PL2 PL3

]T
(3×1)
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CT
iq =



0 0 0 B12 0

0 0 0 0 B13

0 0 0 −B23 B23

0 0 0 −B12 0

0 0 0 0 −B13

0 0 0 B23 −B23

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

−1 0 0 0 0

0 −1 0 0 0

0 0 −1 0 0


(12×5)

biq =
[
−FU

12 −FU
13 −FU

23 −FU
12 −FU

13 −FU
23 PL

G1 PL
G2 PL

G3 −PU
G1 −PU

G2 −PU
G3

]T
(12×1)

Note that the first six rows in matrix CT
iq correspond to thermal inequality constraints and

the next six rows correspond to power production inequality constraints.

5.6.2 A Five-Node Illustration

Now consider a five-node case for which the transmission grid is not completely connected.

As depicted in Figure 5.2, let five Generators and three LSEs be distributed across the grid

as follows: Generators 1 and 2 are located at node 1; LSE 1 is located at node 2; Generator 3

and LSE 2 are located at node 3; Generator 4 and LSE 3 are located at node 4; and Generator

5 is located node 5.

This information implies the following structural configuration for the transmission grid:

K = 5; I = 5; J = 3;

I1 = {G1,G2}, I2 = {∅}, I3 = {G3}, I4 = {G4}, I5 = {G5};
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Figure 5.2 A Five-Node Transmission Grid

J1 = {∅}, J2 = {LSE1}, J3 = {LSE2}, J4 = {LSE3}, J5 = {∅};∑
j∈J1

PLj = 0,
∑
j∈J2

PLj = PL1 ,
∑
j∈J3

PLj = PL2 ,
∑
j∈J4

PLj = PL3 ,
∑
j∈J5

PLj = 0;

The distinct directly-connected node pairs are (1,2), (1,4), (1,5), (2,3), (3,4), (4,5), which

implies that the number of distinct transmission grid branches is N = 6. The branch connection

matrix E can be written as follows:

E =



0 1 0 1 1

1 0 1 0 0

0 1 0 1 0

1 0 1 0 1

1 0 0 1 0


5×5

(5.80)

The weight matrix W and its reduced form Wrr are
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W = 2π



3 −1 0 −1 −1

−1 2 −1 0 0

0 −1 2 −1 0

−1 0 −1 3 −1

−1 0 0 −1 2


5×5

(5.81)

Wrr = 2π



2 −1 0 0

1 2 −1 0

0 −1 3 −1

0 0 −1 2


4×4

(5.82)

The Generators’ cost attribute matrix U is:

U = diag
[

2B1 2B2 2B3 2B4 2B5

]
5×5

(5.83)

The matrix B′ and its reduced form B′
r are as follows:

B′ =



B12 + B14 + B15 −B12 0 −B14 −B15

−B21 B21 + B23 −B23 0 0

0 −B32 B32 + B34 −B34 0

−B41 0 −B43 B41 + B43 + B45 −B45

−B51 0 0 −B54 B51 + B54


5×5

(5.84)

B′
r =



−B21 B21 + B23 −B23 0 0

0 −B32 B32 + B34 −B34 0

−B41 0 −B43 B41 + B43 + y45 −B45

−B51 0 0 −B54 B51 + B54


4×5

(5.85)

With a slight abuse of notation, the ordered list BI of distinct transmission grid branches can

be denoted as follows:
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BI = [(1, 2), (1, 4), (1, 5), (2, 3), (3, 4), (4, 5)]T6×1 (5.86)

The adjacency matrix A with entries of 1 for the “from” node and −1 for the “to” node can

be expressed as

A =



1 −1 0 0 0

1 0 0 −1 0

1 0 0 0 −1

0 1 −1 0 0

0 0 1 −1 0

0 0 0 1 −1


6×5

(5.87)

and its reduced form Ar can be expressed as

Ar =



−1 0 0 0

0 0 −1 0

0 0 0 −1

1 −1 0 0

0 1 −1 0

0 0 1 −1


6×4

(5.88)

The matrix II takes the form

II =



1 1 0 0 0

0 0 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


5×5

(5.89)

Finally, the matrix D takes the form

D = diag
[

B12 B14 B15 B23 B34 B45

]
6×6

(5.90)
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Using the above developments, the SCQP depiction for the augmented DC-OPF problem

for this five-node case can be expressed as follows:

Minimize

f(x) =
1
2
xTGx + aTx

with respect to

x =
[

PG1 PG2 PG3 PG4 PG5 δ2 δ3 δ4 δ5

]T
9×1

subject to

CT
eqx = beq

CT
iqx ≥ biq

where the input matrices and vectors G, aT, CT
eq, beq, CT

iq, and biq take the following ex-

plicit forms:

G = blockDiag
[

U Wrr

]
9×9

aT =
[

A1 A2 A3 A4 A5 0 0 0 0

]
1×9

CT
eq =

[
II −B

′T
r

]
5×9

where

B′
r is defined as in (5.85)

II is defined as in (5.89)
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beq =
[

0 PL1 PL2 PL3 0

]T
5×1

CT
iq =

[
CT

t −CT
t CT

p −CT
p

]T
22×9

where

CT
t =

[
Ot −DAr

]
6×9

Ot = 6× 5 zero matrix

Ar is defined as in (5.88)

D is defined as in (5.90)

CT
p =

[
Ip Op

]
5×9

Ip = 5× 5 identity matrix

Op = 5× 4 zero matrix

biq =
[

bt bt bpL bpU

]T
22×1

where

bt =
[
−FU

12 −FU
14 −FU

15 −FU
23 −FU

34 −FU
45

]T
6×1

bpL =
[

PL
G1 PL

G2 PL
G3 PL

G4 PL
G5

]T
5×1
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bpU =
[
−PU

G1 −PU
G2 −PU

G3 −PU
G4 −PU

G5

]T
5×1

5.7 QuadProgJ Input/Output and Logical Progression

The matrix form of a general SCQP problem is presented in Section 5.2. QuadProgJ

accepts input in this matrix form. In particular, QuadProgJ can be directly used to solve any

DC OPF problem expressed in this matrix form whether the DC OPF variables are expressed

in standard SI units (e.g. ohms, megawatts,...) or in normalized per unit (pu) terms.

On the other hand, to help ensure numerical stability, it is customary when solving DC

OPF problems to carry out all internal calculations in pu terms so that variables have roughly

the same order of magnitude. The pu solution output is then often converted back into SI

units for easier readability.

Consequently, to facilitate the application of QuadProgJ to DC OPF problems, we have

developed an optional outer Java shell for QuadProgJ, referred to as DCOPFJ, that carries

out the following data manipulations: (a) accepts DC OPF input data in SI units and converts

it to pu; (b) uses this pu input data to form the SCQP matrix and vector expressions required

by QuadProgJ; (c) invokes QuadProgJ to solve this SCQP problem; (d) converts the resulting

pu solution output back into SI units.

Consider the augmented DC OPF problem set out in Section 5.4.4. The required input

data for this problem, expressed in SI units, can be schematically depicted as follows:

(SI gridData, SI genData, SI lseData)
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where

SI gridData = (SI nodeData, SI branchData)

SI nodeData = (K, π)

SI branchData = (BI, pU
BI1 ...p

U
BIN

, X ohms)

SI genData = (I, I1...IK , a1...aI , b1...bI , pL
G1...p

L
GI , pU

G1...p
U
GI)

SI lseData = (J, J1...JK ,
∑
j∈J1

pLj ...
∑

j∈JK

pLj)

This SI input data is fed into DCOPFJ along with a base apparent power value So and a base

voltage value Vo. The DCOPFJ shell first uses the base values to transform the SI input data

into pu terms. Using the pu notation introduced in Section 5.4.1, this pu input data can be

schematically depicted as follows:

(pu gridData, pu genData, pu lseData)

where

pu gridData = (pu nodeData, pu branchData)

pu nodeData = (K, π)

pu branchData = (BI, FU
BI1 ...F

U
BIN

, X pu)

pu genData = (I, I1...IK , A1...AI , B1...BI , PL
G1...P

L
GI , PU

G1...P
U
GI)

pu lseData = (J, J1...JK ,
∑
j∈J1

PLj ...
∑

j∈JK

PLj)

DCOPFJ next uses this pu input data to form the matrices and vectors (G,a,Ceq,beq,Ciq,biq)

as detailed in Section 5.5.3. It then feeds these matrix and vector components into the Quad-

ProgJ solver to obtain a solution in pu terms. This pu solution can be expressed in the following

vector form:

(P ∗
G1...P

∗
GI , δ∗2 ...δ

∗
K , λ∗eq, λ∗iq) (5.91)
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In this output vector, (P ∗
G1...P

∗
GI) denotes the vector of optimal pu real power production

commitments in the day-ahead market for Generators i = 1, . . . , I, and (δ∗2 ...δ
∗
K) denotes the

vector of optimal voltage angles (in radians) at nodes k = 2, . . . ,K (omitting the reference node

1 where δ1 is normalized to 0). The solution vector for the Lagrange multipliers corresponding

to the equality constraints is contained in the K× 1 vector λ∗eq. Since each of these multipliers

is a shadow price corresponding to a nodal balance constraint in pu form, λ∗eq provides the

vector of Locational Marginal Prices (LMPs) in pu form.

The solution vector for the Lagrange multipliers corresponding to the inequality constraints

is contained in the (2N +2I)×1 vector λ∗iq. These multipliers provide valuable additional sen-

sitivity information, including “flow gate” prices (in pu) measuring the optimal cost reductions

that would result from relaxations in the branch flow constraints.

Finally, the pu solution (5.91) is fed back into DCOPFJ for conversion into SI units for

reporting purposes. Recalling from Section 5.4.1 that pu real power terms are obtained from

SI real power terms (in MWs) by dividing through by the base apparent power So, this SI

output data can be schematically depicted as follows:

(p∗G1...p
∗
GI , δ∗2 ...δ

∗
K , λ∗eq/So, λ∗iq/So) , (5.92)

where the voltage angles δ∗k are still reported in radians.

In summary, the overall logical flow of the QuadProgJ program can be depicted as follows:

So, Vo, SI gridData, SI genData, SI lseData

⇓

DCOPFJ

⇓

Conversion of SI Input to Per Unit Matrix Form

⇓

G,a,Ceq,beq,Ciq,biq
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⇓

QuadProgJ

⇓

P ∗
G1...P

∗
GI , δ∗2 ...δ

∗
K , λ∗eq, λ∗iq

⇓

DCOPFJ

⇓

Conversion of Per Unit Output to SI Units

⇓

p∗G1...p
∗
GI , δ∗2 ...δ

∗
K , λ∗eq/So, λ∗iq/So

5.8 QP Test Results for QuadProgJ

5.8.1 Overview

QuadProgJ is an open-source plug-and-play Java SCQP solver newly developed by the

authors. QuadProgJ implements the well-known dual active-set SCQP method developed by

Goldfarb and Idnani (1983) in a numerically stable way by utilizing Cholesky decomposition

and QR factorization. For ease of use, QuadProgJ modifies the original Goldfarb and Idnani

method to permit the direct explicit imposition of equality as well as inequality constraints.

As with any dual active-set SCQP method (Fletcher, 1987, pp. 243-245), QuadProgJ pro-

ceeds as follows. In the first iteration all problem constraints are ignored and the tentative

optimal solution is taken to be the unconstrained minimum (which exists by strict convexity

of the objective function). A test is then made to see if any of the original problem constraints

are violated. If so, one of these violated constraints is selected and added to the “active set,”

i.e., the set of constraints to be imposed as equalities. A new optimal solution is then gen-

erated, subject to the active set of constraints, and again a test is made to see if any of the
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original problem constraints are violated. If so, one is selected to be added to the active set

(and a test is made to see if any of the previously active constraints should now be relaxed). A

new constrained optimal solution is then generated. This process continues until no violated

original problem constraints are found.

Compared to other QP methods, such as interior point and primal active-set QP methods,

a dual active-set SCQP method such as QuadProgJ has two major advantages. First, it has a

well-defined starting point: namely, the unconstrained minimum of the objective function. In

contrast, other types of methods typically have to guess or search for a “good” starting point,

which can be very costly in terms of actual computing time. Second, since there are only

finitely many distinct permutations of the inequality constraints to determine which if any are

active (binding), and each activated constraint leads to an increase in the current objective

function value, a dual active-set SCQP method is guaranteed to terminate in a finite number of

steps. Infinite looping can arise with other types of methods for reasons such as a flat starting

point.

On the downside, however, QuadProgJ has two main limitations. First, QuadProgJ requires

the QP objective function to be a strictly convex function.16 Second, QuadProgJ does not

incorporate sparse matrix techniques. Consequently, it is not designed to handle large-scale

problems for which speed and efficiency of computations become critical limiting factors.

In this section a well-known repository of QP test cases is used to demonstrate the accuracy

of QuadProgJ for small to medium-scale QP problems.

5.8.2 QP Test Case Results

The accuracy of QuadProgJ has been tested on a collection of small to medium-sized

SCQP minimization problems included in the QP test case repository prepared by Maros and

Meszaros (1997).17 For each of these problems, the solution value for the minimized objective
16See Section 5.4.3.2 for brief notes on Lagrangian augmentation methods that can be used to induce strict

convexity for convex QP objective functions. Solution algorithms designed to handle non-strictly convex QP
problems have been developed by Boland (1997), Fletcher (1987), Powell (1983), and Stoer (1992).

17Detailed input and output data for the SCQP test cases are available online at:
http://www.sztaki.hu/˜meszaros/public ftp/qpdata/. Most of the test cases are in standard QPS for-
mat. The QPS format is an extension of the MPS format, which is the industrial standard format for linear
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function obtained by QuadProgJ is compared against the corresponding solution value reported

for BPMPD, a well-known QP solver implementing an interior-point algorithm.18

The general structure of these SCQP test cases is given in Table 5.3, along with the reported

BPMPD solution values. Corresponding test case results for QuadProgJ are then reported in

Table 5.4.19 Specifically, Table 5.4 reports the relative difference (RD) between the mini-

mum objective function value f∗ = f(x∗) obtained by QuadProgJ and the minimum objective

function value fBPMPD attained by BPMPD, where

RD ≡ f∗ − fBPMPD
|fBPMPD|

(5.93)

To help ensure a fair comparison, f∗ has been rounded off to the same number of decimal

places as fBPMPD.

In addition, Table 5.4 reports tests conducted to check whether all equality and inequality

constraints are satisfied at the minimizing solution x∗ obtained by QuadProgJ. More precisely,

for any given SCQP test case, the equality constraints take the form

CT
eqx = beq (5.94)

and the inequality constraints take the form

CT
iqx ≥ biq (5.95)

Let TNEC denote the total number of equality constraints for this test case (i.e. the row

dimension of CT
eq), and let TNIC denote the total number of inequality constraints for this test

case (i.e. the row dimension of CT
iq). Also, let x∗ denote the solution obtained by QuadProgJ

for this test case.

The equality constraints for each SCQP test case are checked by computing the Equality

Constraint Error (ECE) for this test case, defined to be the TNEC× 1 residual vector

ECE ≡ Ceqx∗ − beq (5.96)

programming test cases.
18See the BPMPD web site for detailed information. URL: http://www.sztaki.hu/˜meszaros/bpmpd/
19All of the results reported in Table 5.4 for QuadProgJ were obtained from runs on a laptop PC: namely, a

Compaq Presario 2100 running under Windows XP SP2 (mobile AMD Athlon XP 2800+ 2.12 GHz, 496 MB
of RAM). The reported results for the BPMPD solver are taken from Maros and Meszaros (1997), who do not
identify the hardware platform on which the BPMPD solver runs were made.
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Table 5.4 reports the mean and maximum of the absolute values of the components of this

ECE vector for each SCQP test case, denoted by Mean|ECE| and Max|ECE| respectively.

Similarly, the inequality constraints for each SCQP test case are checked by computing the

Inequality Constraint Error (ICE), defined to be the TNIC× 1 residual vector

ICE ≡ Ciqx∗ − biq (5.97)

Table 5.4 reports the Number of Violated Inequality Constraints (NVIC) for each SCQP test

case, meaning the number of negative components in this ICE vector.

Table 5.3 SCQP Test Cases: Structural Attributes and BPMPD Solution
Values

NAMEa TNDb TNECc TNICd TNCe TNf fBPMPDg

DUAL1 85 1 170 171 256 3.50129662E-02
DUAL2 96 1 192 193 289 3.37336761E-02
DUAL3 111 1 222 223 234 1.35755839E-01
DUAL4 75 1 150 151 226 7.46090842E-01
DUALC1 9 1 232 233 242 6.15525083E+03
DUALC5 8 1 293 294 302 4.27232327E+02
HS118 15 0 59 59 74 6.64820452E+02
HS21 2 0 5 5 7 -9.99599999E+01
HS268 5 0 5 5 10 5.73107049E-07
HS35 3 0 4 4 7 1.11111111E-01
HS35MOD 3 0 5 5 8 2.50000001E-01
HS76 4 0 7 7 11 -4.68181818E+00
KSIP 20 0 1001 1001 1021 5.757979412E-01
QPCBLEND 83 43 114 157 240 -7.84254092E-03
QPCBOEI1 384 9 971 980 1364 1.15039140E+07
QPCBOEI2 143 4 378 382 525 8.17196225E+06
QPCSTAIR 467 209 696 905 1372 6.20438748E+06
S268 5 0 5 5 10 5.73107049E-07
MOSARQP2 900 0 600 600 1500 -0.159748211E+04

aCase name (in QPS format), see Maros and Meszaros (1997) for a detailed description of the QPS format
bTotal number of decision variables
cTotal number of equality constraints
dTotal number of inequality constraints
eTotal number of constraints (equality and inequality). TNC=TNEC+TNIC
fTotal number of decision variables and constraints (problem size). TN=TND+TNC
gMinimizing solution value obtained by the BPMPD solver on an unknown hardware platform

Based on the results presented in Table 5.4, it appears that the QuadProgJ solver has
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Table 5.4 QuadProgJ Test Case Results

NAME Mean|ECE|a Max|ECE|b NVICc f*d RDe

DUAL1 0.0 0.0 0 3.50129657E-2 -1.42804239E-8
DUAL2 0.0 0.0 0 3.37336761E-2 0.0
DUAL3 6.66E-16 6.66E-16 0 1.35755837E-1 -1.47323313E-8
DUAL4 2.11E-15 2.11E-15 0 7.46090842E-1 0.0
DUALC1 2.40E-12 2.40E-12 0 6.15525083E+3 0.0
DUALC5 5.33E-15 5.33E-15 0 4.27232327E+2 0.0
HS118 NAf NA 0 6.64820450E+2 -3.00833103E-9
HS21 NA NA 0 -99.96 -1.00040010E-9
HS268 NA NA 0 -5.47370291E-8 -1.09550926
HS35 NA NA 0 1.11111111E-1 0.0
HS35MOD NA NA 0 2.50000000E-1 -4.00000009E-9
HS76 NA NA 0 -4.68181818 0.0
KSIP NA NA 0 5.75797941E-1 0.0
QPCBLEND 5.66E-16 8.94E-15 0 -7.84254307E-3 -2.74145844E-7
QPCBOEI1 2.05E-6 9.58E-6 0 1.15039140E+7 0.0
QPCBOEI2 3.42E-6 1.37E-5 0 8.17196224E+6 -1.22369628E-9
QPCSTAIR 4.34E-7 6.01E-6 0 6.20438745E+6 -4.83528799E-9
S268 NA NA 0 -5.47370291E-8 -1.09550926
MOSARQP2 NA NA — OOMEg —

aMean of the absolute values of the components of ECE (Equality Constraint Error)
bMaximum of the absolute values of the components of ECE
cTotal number of violated inequality constraints
dMinimum objective function value as computed by QuadProgJ
eRelative difference [f*-fBPMPD]/|fBPMPD| between the QuadProgJ and BPMPD solution values for
the minimized objective function. A negative value indicates QuadProgJ improves on BPMPD.

fNA indicates “Not Applicable,” meaning there are no constraints of the indicated type.
gOut-of-Memory Error indicated by a run-time Java Exception: java.lang.OutOfMemoryError

an accuracy level slightly better than the BPMPD solver for small to medium-sized SCQP

problems, that is, for SCQP problems for which the total number (TN) of decision variables

plus constraints is less than 1500. This conclusion is supported by the observation that, for each

of these test cases, the minimized objective function value f∗ = f(x∗) obtained by QuadProgJ

either equals or is strictly smaller than the corresponding minimized objective function value

fBPMPD obtained by BPMPD, with no indication that the QuadProgJ solution x∗ violates

any equality or inequality constraints.20

20Maros and Meszaros (1997) do not provide constraint checks for the BPMPD solutions reported in their
repository.
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Even in cases in which QuadProgJ improves on the BPMPD solution, however, the relative

difference between the two solutions tends to be extremely small, generally on the order of

10−7. The only exceptions are the two cases HS268 and S268 where QuadProgJ appears to

improve significantly on the BPMPD solver. HS268 and S268 are relatively simple SCQP

minimization problems subject only to inequality constraints, none of which turns out to be

binding at the optimal solution. Why the interior-point BPMPD solver appears to degrade in

accuracy on such problems is unclear.

All in all, QuadProgJ either matches or improves on the BPMPD solutions for all of the

small and medium-sized SCQP test cases reported in Table 5.4, i.e. for all of the test cases for

which TN (the total number of constraints plus decision variables) is less than 1500. Since the

BPMPD solver has been in use since 1998, and is considered to have a proven high quality for

solving QP problems, this finding suggests that QuadProgJ is at least as accurate a solver as

BPMPD for SCQP problems of this size.

As noted previously, however, QuadProgJ is not designed for large-scale problems. The test

results presented in Table 5.4 show that an out-of-memory error was triggered when an attempt

was made to use QuadProgJ to solve test case MOSARQP2 with size TN = 1500. Whether

this finding reflects an intrinsic limitation of QuadProgJ or is simply a desktop limitation that

could be ameliorated by installing additional memory or by using a different hardware platform

is an issue requiring further study.

5.9 DC OPF Test Case Results

5.9.1 Overview

In this section, QuadProgJ is used to solve illustrative three-node and five-node DC OPF

test cases taken from power systems texts and ISO-NE/MISO/PJM training manuals.

Each of these DC OPF test cases is solved by invoking QuadProgJ through the outer Java

shell DCOPFJ. Specifically, given SI input data and base apparent power and base voltage

values as detailed in Section 5.7, DCOPFJ invokes QuadProgJ to solve for optimal real power

injections, real power branch flows, voltage angles, LMPs, total variable costs, and various
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other output values. In particular, DCOPFJ automates the conversion of SI data to pu form

for internal calculations and forms all needed matrix/vector representations.

These illustrative DC OPF test cases raise intriguing economic issues concerning the ISO

operation of wholesale power markets in the presence of constraints on branch flows and pro-

duction levels. The information content of LMPs in relation to these constraints is of particular

interest. For the study at hand, however, these test cases are simply used to illustrate concretely

the capability of QuadProgJ to generate detailed DC OPF solution values. The systematic

study and interpretation of DC OPF solutions generated via QuadProgJ in the context of

carefully constructed experimental designs is left for future studies.

The section concludes with a separate reporting of sensitivity results for the soft penalty

weight π > 0 for both the three-node and five-node DC OPF test cases. These results demon-

strate that the DC OPF solution values depend on the value of π in the expected way. The

magnitude of the summed voltage angle differences is inversely related to the magnitude of

π. However, for sufficiently small π the sensitivity of the DC OPF solution values to further

decreases in π becomes negligible. Moreover, no numerical instability or convergence problems

were detected at any of these tested π values.

5.9.2 Three-Node Test Results

Table 5.5 provides SI input as well as base apparent power and base voltage levels So and

Vo for a day-ahead wholesale power market operating over a three-node transmission grid as

depicted in Figure 5.1. The daily (24 hour) load distribution for the day-ahead market is

depicted in Figure 5.3. Note that LSE 2 and LSE 3 have identical load profiles. In addition,

Generator 1 has the least expensive cost (as measured by the cost attributes a and b), and

Generator 2’s cost is between the cost of Generator 1 and Generator 3. This input data is

adopted from Tables 8.2-8.4 (p. 297) in Shahidehpour et al. (2002).21

Tables 5.6-5.7 present DC OPF solution results in SI units for this day-ahead market for
21Unfortunately, Shahidehpour et al. (2002) do not provide corresponding DC OPF solution values that could

be used to compare against QuadProgJ solution values. Their focus is on the derivation of unit commitment
schedules subject to additional security constraints that help to ensure reliability in the event of line outages.
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24 successive hours. Specifically, Table 5.6 reports solution values for the real power injection

p∗Gi for each Generator i, the optimal voltage angle δ∗k for each non-reference node k, and the

LMP (λ∗eqk/So) for each node k. Table 5.7 reports solution values for the twelve inequality

constraint multipliers, the first six corresponding to thermal limits on branch flows and the

final six corresponding to lower and upper bounds on production levels. Also reported in this

table are the solution values for real power branch flows.

Figure 5.3 24 Hour Load Distribution for a 3-Node Case

As seen in Table 5.7, the branch flow multipliers are all zero. This means there are no

binding branch flow constraints, hence no branch congestion that would force higher-cost Gen-

erators to be dispatched prior to lower-cost Generators. Consequently, one would expect to see

Generator 1 used to meet load demand as much as possible. Generator 2 should only produce

more than its minimum production level when the load demand is so high that it exceeds

the maximum production level of Generator 1, and Generator 3 should only produce more
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than its minimum production level when load demand is so high that it exceeds the maximum

production level of Generator 2.

The solution results reported in Table 5.6 are consistent with these theoretical predictions.

Examining the output columns for p∗G1, p∗G2, and p∗G3, one sees the following pattern. For the

low-demand off-peak hours (i.e. hours 02-08), Generator 1 is supplying as much of the load

as possible; Generator 2 and Generator 3 are producing at their minimum production levels

(10 MWs and 5 MWs, respectively). In contrast, for the high-demand peak hours (i.e. hours

01 and 09-24), Generator 1 is producing at its maximum production level (200 MWs) and

Generator 2’s production exceeds its minimum production level (10Mws). This clearly shows

that dispatch priority is being based on cost attributes.

The column “minTVC” in Table 5.6 reports minimized total variable cost for each hour

summed across all Generators. For the three-node example at hand, which has three Genera-

tors,

minTVC =
3∑

i=1

[ai · p∗Gi + bi · p∗2Gi] (5.98)

As expected, minTVC changes hour by hour to reflect changes in the corresponding load;

compare the daily load profile depicted in Figure 5.3.

Another important consistency check follows from the observation, made above, that all

of the branch flow multipliers in Table 5.7 are zero, indicating the absence of any branch

congestion. The absence of branch congestion implies that the LMPs should be the same

across all nodes for each hour. This is verified by output columns LMP1, LMP2, and LMP3 in

Table 5.6.

Finally, Table 5.7 reports six multiplier values corresponding to six real power production

constraints, two (lower and upper) for each of the three Generators. These multiplier values are

entirely consistent with the results in Table 5.6. For example, the multiplier value associated

with the minimum (lower) production level for Generator 3 is strictly positive for each hour,

which is consistent with the result in Table 5.6 that Generator 3 is scheduled to produce at its

minimum production level (5 MWs) for each hour.
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5.9.3 Five-Node Test Results

Table 5.8 presents SI input data for a day-ahead wholesale power market operating over a

five-node transmission grid as depicted in Figure 5.2.22 The daily (24 hour) load distribution

in SI units for the day-ahead market is depicted in Figure 5.4. Tables 5.9-5.13 report the

optimal solution values in SI units for real power production levels, voltage angles, LMP

values, minimum total variable cost, inequality constraint multipliers, and branch flows for 24

successive hours in the day-ahead market.

Figure 5.4 24 Hour Load Distribution for a 5-Node Case

In contrast to the three-node case, this five-node case exhibits branch congestion. Specifi-

cally, branch congestion occurs between node 1 and node 2 (and only these nodes) in each of

the 24 hours. This can be verified directly by column P12 in Table 5.13, which shows that the

real power flow P12 on branch km = 12 is at its upper thermal limit (250 MWs) for each hour.
22The transmission grid, reactances, and locations of Generators and LSEs for this 5-node example are

adopted from an example developed by John Lally (2002) for the ISO-NE that is now included in training
manuals prepared by the ISO-NE (2006), the MISO (2006), and PJM (2006). The general shape of the LSE
load profiles is adopted from a 3-node example presented in Shahidehpour et al. (2002, pp. 296-297).
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It can also be verified indirectly by column “12” in Table 5.11, which shows that the thermal

inequality constraint multiplier for branch km = 12 is positively valued for each hour, indicat-

ing a binding constraint. The direct consequence of this branch congestion is the occurrence

of widespread LMP separation, i.e. the LMP values differ across all nodes for each hour. This

can be verified by examining output columns LMP1-LMP5 in Table 5.10.

Examining this LMP data more closely, it is seen that LMP2 and LMP3 (the LMPs for

nodes 2 and 3) exhibit a sharp change in hour 18, increasing between hour 17 and hour 18 by

about 100% and then dropping back to “normal” levels in hour 19 and beyond. Interesting,

this type of sudden spiking in LMP values is also observed empirically in MISO’s Dynamic

LMP Contour Map23 for real-time market prices, which is updated every five minutes.

This rather dramatic LMP peaking in hour 18 can be traced to several factors. First, as

seen in Figure 5.4, the load profile for each LSE peaks at hour 18. Second, when solving the

DC OPF problem to meet the high load in hour 18, the ISO has to take into consideration

the maximum production limit for Generator 3 as well as the thermal inequality constraint

between node 1 and node 2. Both of these constraints turn out to be binding. Specifically,

as seen in Table 5.9, Generator 3 is dispatched in hour 18 at its maximum production limit

(520 MWs); and, as seen in Table 5.13, the real power flow in branch km = 12 is at its upper

limit (250 MWs) for all 24 hours. Given the configuration of the transmission grid, to meet

the hour 18 peak load the ISO is forced to back down (relative to hour 17) the less expensive

production of Generators 1 and 2 and to use instead the more expensive production of the

“peaker” Generator 4.

After the peak hour 18, the load returns to lower levels. The ISO is then able to dispatch

Generator 1 and Generator 2 at their more “normal” levels, with Generator 1 at its upper

production limit, and to avoid dispatching any production from generation 4; note from Table

5.8 that the minimum production level of Generator 4 is 0. Furthermore, the LMPs drop back

to their more normal levels after hour 18.

23http://www.midwestmarket.org/page/LMP%20Contour%20Map%20&%20Data
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5.9.4 Π Sensitivity Test Results

Sensitivity tests were conducted to check the extent to which the solution values reported

in Sections 5.9.2 and 5.9.3 for the three-node and five-node DC OPF test cases depend on the

specific choice of the soft penalty weight π.

For the three-node case, a separate solution set was generated for each of the following five

π values: 100, 10, 1, 0.1 and 0.01. These five solution sets are reported in Tables 5.14-5.18.

These solution results show that decreasing the value of π over the tested range from 100

to 0.01 had little impact on the resulting solution values. The only perceptible changes at

the reported precision level (four decimal places) were in the LMP values in their second and

higher decimal places. Moreover, the LMP values stabilized through two decimal places (i.e.

to values rounded off to pennies) once π decreased to the level 1.0.

Tables 5.19 and 5.20 report the sum of squared voltage angle differences for the three-node

and five-node DC OPF test cases as the soft penalty weight π is decreased in value from 100

to 0.01. As can be seen, these sums are extremely small: namely, about 10−15 in magnitude

for the three-node case and about 10−7 in magnitude for the five-node case. In the three-node

case, any change in these sums in response to the changes in the value of π are below visibility

in the reported data. In the five-node case, however, the sums are seen to increase slightly as

the value of π decreases, which is the expected result of decreasing the penalty attached to the

sum.

Also as expected, the sum of squared voltage angle differences increases with an increase

in nodes from three to five for each tested value of π. This suggests that a researcher might

need to tailor the value of π to the problem at hand in order to achieve a desired degree of

smallness for voltage angle differences. In addition, in some situations it might be desirable to

introduce individual weights on the voltage angle differences instead of using a common weight

π, e.g. in order to represent transmission grid losses. This could easily be accomplished by a

simple respecification of the weight matrix W in (5.43).
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5.10 Concluding Remarks

Restructured electricity markets are extraordinarily complex. For example, restructured

wholesale power markets in the U.S. typically involve spot and forward energy markets operated

by ISO/RTOs over AC transmission grids subject to congestion effects. As reported by Joskow

(2006, Table 1), over 50% of the generation capacity in the U.S. is now operating under this

market design, and other regions of the U.S. are moving towards this form of organization.

The complexity of restructured electricity markets essentially forces electricity researchers

to resort to computational methods of analysis. Unfortunately, much of the software currently

available for computational electricity modeling is commercial and hence proprietary. This

restricts the ability of electricity researchers to publish self-sufficient studies permitting full

access to implementation.

A key stumbling block to developing open-source software for general academic research

into restructured electricity markets is the need to model the AC/DC optimal power flow

(OPF) problems that must repeatedly be solved by ISO/RTO operators in order to generate

daily unit commitment and dispatch schedules, as well as locational marginal prices (LMPs),

for both spot and forward energy markets. Developing algorithms for the successful solution of

optimization problems involving mixed collections of equality and inequality constraints, even

when specialized to quadratic objective functions (as in DC OPF approximations to AC OPF

problems), is a daunting task full of pitfalls for the unwary.

This study reports the development of QuadProgJ, an open-source plug-and-play Java

solver for strictly convex quadratic programming (SCQP) problems that can be applied to

standard DC OPF problems for research and training purposes. QuadProgJ implements the

well-known dual active-set SCQP algorithm developed by Goldfarb and Idnani (1983). The

accuracy of QuadProgJ is demonstrated by means of comparative results for a well-known

suite of QP test problems with up to 1500 decision variables plus constraints.

In addition, this study proposes a physically meaningful augmentation of the standard DC

OPF problem that permits the direct generation of solution values for LMPs, voltage angles,

and voltage angle differences together with real power injections and branch flows. Three-node
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and five-node test cases are used to demonstrate how QuadProgJ, coupled with a Java outer

shell DCOPFJ, can be used to directly generate complete solution values for this augmented

DC OPF problem. In particular, DCOPFJ automates the SI/pu conversion and matrix/vector

representation of all needed input data for this augmented DC OPF problem.
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5.12 Appendix

5.12.1 Appendix A: Derivation of Power Flow Branch Equations

Recall from Section 5.4.1 that equations for the flow of real and reactive power in any

transmission grid branch km (k 6= m) are depicted as follows:

Pkm = V 2
k gkm − VkVm[gkm cos(δk − δm) + bkm sin(δk − δm)] (5.99)

Qkm = − V 2
k bkm − VkVm[gkm sin(δk − δm)− bkm cos(δk − δm)] (5.100)

This appendix provides a rigorous derivation of these equations from Ohm’s Law.

A.1 Preliminary: The Relationship Between Impedance and Admittance

Using standard notational conventions, the impedance z on a transmission grid branch is

expressed as

z = r + jx (impedance = resistance +
√
−1 reactance) (5.101)
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and the admittance y on a transmission grid branch is expressed as

y = g + jb (admittance = conductance +
√
−1 susceptance) (5.102)

Since y = 1/z, it follows that

y =
1
z

=
1

r + jx
=

r

r2 + x2
+ j

−x

r2 + x2
(5.103)

Thus,

g =
r

r2 + x2

b =
−x

r2 + x2

A.2 Derivation of Equations (5.99) and (5.100)

The following derivation24 is based on Gönen (1988, (2.4)). Boldface letters denote complex

variables while letters in normal font denote real variables. Also, the following trigonometric

identities will be used in this derivation:

cos(α− β) = cos α cos β + sinα sinβ

sin(α− β) = sin α cos β − cos α sinβ

Let km denote any transmission grid branch, and let Skm (in MVA) denote the complex power

flowing in this branch. This complex power can be represented as

Skm = Pkm + jQkm = VkI∗km (5.104)

where

j =
√
−1

Vk = Vk cos δk + jVk sin δk

Ikm = Current (in Amperes) on branch km

I∗km = Complex conjugate of Ikm

24Recall from Section 5.3.2 that all transformer tap ratios are assumed to be 1, and all transformer phase
angle shifts and line-charging capacitances are assumed to be 0. For an alternative derivation of the power flow
equations that permits general settings for these variables, see Hogan (2002, Appendix).
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By Ohm’s Law in AC settings,

Ikm =
Vk −Vm

zkm
(5.105)

where the impedance zkm on branch km can be expressed as

zkm = rkm + jxkm

The complex conjugate of the impedance zkm
∗ is then written as

z∗km = rkm − jxkm

Consequently, Skm can be written as:

Skm = Vk
V∗

k −V∗
m

z∗km

= [Vk cos δk + jVk sin δk]
[Vk cos δk − jVk sin δk]− [Vm cos δm − jVm sin δm]

rkm − jxkm

=
[V 2

k cos2 δk + V 2
k sin2 δk]− Vk[cos δk + j sin δk]Vm[cos δm − j sin δm]

rkm − jxkm

=
V 2

k − VkVm [(cos δk cos δm + sin δk sin δm) + j(sin δk cos δm − cos δk sin δm)]
rkm − jxkm

=
V 2

k − VkVm[cos(δk − δm) + j sin(δk − δm)]
rkm − jxkm

(Let θ = δk − δm)

=
[rkm + jxkm]V 2

k − [rkm + jxkm]VkVm[cos θ + j sin θ]
[rkm + jxkm][rkm − jxkm]

=
rkmV 2

k − VkVm[rkm cos θ − xkm sin θ]
r2
km + x2

km

+ j
xkmV 2

k − VkVm[rkm sin θ + xkm cos θ]
r2
km + x2

km

=
(
V 2

k gkm − VkVm[gkm cos θ + bkm sin θ]
)

+ j
(
−V 2

k bkm − VkVm[gkm sin θ − bkm cos θ]
)

= Pkm + jQkm
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Hence, we can infer that (5.99) and (5.100) hold.

5.12.2 Appendix B: Expressing DC OPF Voltage Angles as a Linear Affine Func-

tion of Real Power Injections

This section establishes that the vector of non-reference voltage angles in the standard DC

OPF problem in pu form presented in Section 5.4.2 can be expressed as a linear affine function

of the vector of real power injections.

The basic equations to consider are the real power nodal balance constraints (5.26) for

k = 2, . . . ,K together with the normalization δ1 = 0 imposed on the reference node voltage

angle δ1 by constraint (5.33). When the nodal balance constraint for any node k ≥ 2 is

expressed solely in terms of voltage angles, real power injections, and real power loads, it takes

the following form:

∑
i∈Ik

PGi −
∑

km ormk∈BR

Bkm[δk − δm] =
∑
j∈Jk

PLj (5.106)

This collection of nodal balance constraints for k = 2, . . . ,K can equivalently be expressed in

matrix form as follows:

PNetInject = B′
rrδ (5.107)

where PNetInject denotes the (K−1)×1 vector of net nodal real power injections PNetInjectk

for nodes k = 2, . . . ,K, and B′
rr denotes the bus admittance matrix B′ in (5.51) with its

first row and first column eliminated (corresponding to the reference node 1). For concrete

illustration, equation (5.107) for the 5-node test case presented in Section 5.6.2 takes the

following specific form:
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

0− PL1

PG3 − PL2

PG4 − PL3

PG5 − 0


=



B21 + B23 −B23 0 0

−B32 B32 + B34 −B34 0

0 −B43 B41 + B43 + y45 −B45

0 0 −B54 B51 + B54


4×4



δ2

δ3

δ4

δ5


(5.108)

Since the matrix B′
rr is invertible by construction, we have the following relationship be-

tween the voltage angles and the net nodal power injections:

δ = [B′
rr]

−1PNetInject (5.109)

In terms of the 5-node test case, equation (5.109) takes the following form:



δ2

δ3

δ4

δ5


=



B21 + B23 −B23 0 0

−B32 B32 + B34 −B34 0

0 −B43 B41 + B43 + y45 −B45

0 0 −B54 B51 + B54



−1

4×4



0− PL1

PG3 − PL2

PG4 − PL3

PG5 − 0


(5.110)

The net nodal power injection vector PNetInject can be further decomposed into a linear

affine function of the real power injection vector PG = (PG1, . . . , PGI)T as follows:

PNetInject = RPG + β (5.111)

where R is a (K − 1)× I matrix and β is a (K − 1)× 1 vector defined as follows

R =



I(1 ∈ I2) I(2 ∈ I2) · · · I(I ∈ I2)

I(1 ∈ I3) I(2 ∈ I3) · · · I(I ∈ I3)
...

...
. . .

...

I(1 ∈ IK) I(2 ∈ IK) · · · I(I ∈ IK)


(K−1)×I

(5.112)
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where

I(i ∈ Ik) =

 1 if i ∈ Ik

0 if i /∈ Ik

β =
[
−
∑

j∈J2
PLj −

∑
j∈J3

PLj · · · −
∑

j∈JK
PLj

]T

(K−1)×1

(5.113)

Again using the 5-node test case for concrete illustration, we can write out equation (5.111) as



0− PL1

PG3 − PL2

PG4 − PL3

PG5 − 0


=



0 0 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1





PG1

PG2

PG3

PG4

PG5


+



−PL1

−PL2

−PL3

0


(5.114)

Finally, combining (5.109) and (5.111), we see that it is possible to solve explicitly for the

voltage angle vector δ as a linear affine function of the real power injection vector PG: namely,

δ = R∗PG + ν (5.115)

where R∗ = [B′
rr]

−1R and ν = [B′
rr]

−1β.
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Table 5.5 DC OPF Input Data in SI Units for Three-Node Case

So Vo

100 10

Ka πb

3 0.05

Branch
From To lineCapc xd

1 2 55 0.20
1 3 55 0.40
2 3 55 0.25

Gen
ID atNode FCost a b pMine pMaxf

1 1 14 10.6940 0.00463 20 200
2 2 21 18.1000 0.00612 10 150
3 3 11 37.8896 0.01433 5 20

LSE
ID atNode L-01g L-02 L-03 L-04 L-05 L-06 L-07 L-08

1 1 132.66 122.4 115.62 112.2 108.84 110.52 112.2 119.04
2 2 44.22 40.8 38.54 37.4 36.28 36.84 37.4 39.68
3 3 44.22 40.8 38.54 37.4 36.28 36.84 37.4 39.68
ID atNode L-09 L-10 L-11 L-12 L-13 L-14 L-15 L-16

1 1 136.02 149.64 153.06 154.74 153.06 149.64 147.96 147.96
2 2 45.34 49.88 51.02 51.58 51.02 49.88 49.32 49.32
3 3 45.34 49.88 51.02 51.58 51.02 49.88 49.32 49.32
ID atNode L-17 L-18 L-19 L-20 L-21 L-22 L-23 L-24

1 1 154.74 170.04 163.26 161.52 159.84 156.42 147.96 137.76
2 2 51.58 56.68 54.42 53.84 53.28 52.14 49.32 45.92
3 3 51.58 56.68 54.42 53.84 53.28 52.14 49.32 45.92

aTotal number K of nodes
bSoft penalty weight π for voltage angle differences
cUpper limit P U

km (in MWs) on magnitude of real power flow in branch km
dReactance xkm (in ohms) for branch km
eLower limit pL

Gi (in MWs) on real power production for Generator i
fUpper limit pU

Gi (in MWs) on real power production for Generator i
gL-H: Load (in MWs) for hour H, where H=01,02,...,24
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Table 5.6 DC OPF Solution Results in SI Units for Three-Node Case

Hour p∗G1 p∗G2 p∗G3 δ∗2
a δ∗3 LMP1

b LMP2 LMP3 minTVCc

01 200.0 16.1 5.0 -0.0799 -0.1095 18.30 18.30 18.30 2993.95
02 189.0 10.0 5.0 -0.0808 -0.1048 12.44 12.44 12.44 2724.33
03 177.7 10.0 5.0 -0.0752 -0.0979 12.34 12.34 12.34 2565.12
04 172.0 10.0 5.0 -0.0724 -0.0944 12.29 12.29 12.29 2485.70
05 166.4 10.0 5.0 -0.0696 -0.0910 12.23 12.23 12.23 2408.27
06 169.2 10.0 5.0 -0.0710 -0.0927 12.26 12.26 12.26 2446.91
07 172.0 10.0 5.0 -0.0724 -0.0944 12.29 12.29 12.29 2485.70
08 183.4 10.0 5.0 -0.0780 -0.1014 12.39 12.39 12.39 2645.13
09 200.0 21.7 5.0 -0.0741 -0.1077 18.37 18.37 18.37 3097.90
10 200.0 44.4 5.0 -0.0506 -0.1002 18.64 18.64 18.64 3527.13
11 200.0 50.1 5.0 -0.0447 -0.0983 18.71 18.71 18.71 3636.90
12 200.0 52.9 5.0 -0.0418 -0.0974 18.75 18.75 18.75 3691.11
13 200.0 50.1 5.0 -0.0447 -0.0983 18.71 18.71 18.71 3636.90
14 200.0 44.4 5.0 -0.0506 -0.1002 18.64 18.64 18.64 3527.13
15 200.0 41.6 5.0 -0.0535 -0.1011 18.61 18.61 18.61 3473.51
16 200.0 41.6 5.0 -0.0535 -0.1011 18.61 18.61 18.61 3473.51
17 200.0 52.9 5.0 -0.0418 -0.0974 18.75 18.75 18.75 3691.11
18 200.0 78.4 5.0 -0.0154 -0.0890 19.06 19.06 19.06 4193.64
19 200.0 67.1 5.0 -0.0271 -0.0927 18.92 18.92 18.92 3968.98
20 200.0 64.2 5.0 -0.0301 -0.0937 18.89 18.89 18.89 3911.83
21 200.0 61.4 5.0 -0.0330 -0.0946 18.85 18.85 18.85 3856.85
22 200.0 55.7 5.0 -0.0389 -0.0965 18.78 18.78 18.78 3745.51
23 200.0 41.6 5.0 -0.0535 -0.1011 18.61 18.61 18.61 3473.51
24 200.0 24.6 5.0 -0.0711 -0.1067 18.40 18.40 18.40 3152.03

aVoltage angle solutions δ∗k are reported in radians
bLocational marginal price, LMPk = λ∗eqk/So for each node k
cMinimized total variable cost
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Table 5.7 DC OPF Solution Results in SI Units for Three-Node Case -
Inequality Constraint Multipliers and Real Power Branch Flows

Branch km multipliers Production constraint multipliers Branch Flow
Hour 12 13 23 21 31 32 PL

G1 PL
G2 PL

G3 PU
G1 PU

G2 PU
G3 P12 P13 P23

01 0 0 0 0 0 0 0 0 19.74 5.75 0 0 39.96 27.38 11.84
02 0 0 0 0 0 0 0 5.78 25.59 0 0 0 40.40 26.20 9.60
03 0 0 0 0 0 0 0 5.88 25.69 0 0 0 37.61 24.47 9.07
04 0 0 0 0 0 0 0 5.94 25.75 0 0 0 36.20 23.60 8.80
05 0 0 0 0 0 0 0 5.99 25.80 0 0 0 34.82 22.74 8.54
06 0 0 0 0 0 0 0 5.96 25.77 0 0 0 35.51 23.17 8.67
07 0 0 0 0 0 0 0 5.94 25.75 0 0 0 36.20 23.60 8.80
08 0 0 0 0 0 0 0 5.83 25.64 0 0 0 39.02 25.34 9.34
09 0 0 0 0 0 0 0 0 19.67 5.82 0 0 37.06 26.92 13.42
10 0 0 0 0 0 0 0 0 19.39 6.10 0 0 25.31 25.05 19.83
11 0 0 0 0 0 0 0 0 19.32 6.17 0 0 22.36 24.58 21.44
12 0 0 0 0 0 0 0 0 19.29 6.20 0 0 20.91 24.35 22.23
13 0 0 0 0 0 0 0 0 19.32 6.17 0 0 22.36 24.58 21.44
14 0 0 0 0 0 0 0 0 19.39 6.10 0 0 25.31 25.05 19.83
15 0 0 0 0 0 0 0 0 19.42 6.06 0 0 26.76 25.28 19.04
16 0 0 0 0 0 0 0 0 19.42 6.06 0 0 26.76 25.28 19.04
17 0 0 0 0 0 0 0 0 19.29 6.20 0 0 20.91 24.35 22.23
18 0 0 0 0 0 0 0 0 18.97 6.51 0 0 7.71 22.25 29.43
19 0 0 0 0 0 0 0 0 19.11 6.38 0 0 13.56 23.18 26.24
20 0 0 0 0 0 0 0 0 19.15 6.34 0 0 15.06 23.42 25.42
21 0 0 0 0 0 0 0 0 19.18 6.31 0 0 16.51 23.65 24.63
22 0 0 0 0 0 0 0 0 19.25 6.24 0 0 19.46 24.12 23.02
23 0 0 0 0 0 0 0 0 19.42 6.06 0 0 26.76 25.28 19.04
24 0 0 0 0 0 0 0 0 19.63 5.86 0 0 35.56 26.68 14.24

PU
12 PU

13 PU
23

55 55 55
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Table 5.8 DC OPF Input Data in SI Units for Five-Node Case

So Vo

100 10

K π

5 0.05

Branch
From To lineCap x

1 2 250 0.0281
1 4 150 0.0304
1 5 400 0.0064
2 3 350 0.0108
3 4 240 0.0297
4 5 240 0.0297

Gen
ID atNode FCost a b pMin pMax

1 1 16 14 0.005 0 110
2 1 19 15 0.006 0 100
3 3 28 25 0.010 0 520
4 4 10 30 0.012 0 200
5 5 24 10 0.007 0 600

LSE
ID atNode L-01 L-02 L-03 L-04 L-05 L-06 L-07 L-08

1 2 350.00 322.93 305.04 296.02 287.16 291.59 296.02 314.07
2 3 300.00 276.80 261.47 253.73 246.13 249.93 253.73 269.20
3 4 250.00 230.66 217.89 211.44 205.11 208.28 211.44 224.33
ID atNode L-09 L-10 L-11 L-12 L-13 L-14 L-15 L-16

1 2 358.86 394.80 403.82 408.25 403.82 394.80 390.37 390.37
2 3 307.60 338.40 346.13 349.93 346.13 338.40 334.60 334.60
3 4 256.33 282.00 288.44 291.61 288.44 282.00 278.83 278.83
ID atNode L-17 L-18 L-19 L-20 L-21 L-22 L-23 L-24

1 2 408.25 448.62 430.73 426.14 421.71 412.69 390.37 363.46
2 3 349.93 384.53 369.20 365.26 361.47 353.73 334.60 311.53
3 4 291.61 320.44 307.67 304.39 301.22 294.78 278.83 259.61
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Table 5.9 DC OPF Solution Results in SI Units for Five-Node Case - Opti-
mal Real Power Production Levels and Optimal Voltage Angles
(in Radians)

Hour p∗G1 p∗G2 p∗G3 p∗G4 p∗G5 δ∗2 δ∗3 δ∗4 δ∗5
01 110.00 13.87 332.53 0.00 443.59 -0.0702 -0.0595 -0.0394 0.0164
02 110.00 13.44 269.41 0.00 437.54 -0.0702 -0.0624 -0.0385 0.0162
03 110.00 13.16 227.70 0.00 433.54 -0.0702 -0.0643 -0.0379 0.0161
04 110.00 13.01 206.66 0.00 431.52 -0.0703 -0.0653 -0.0376 0.0160
05 110.00 12.87 185.99 0.00 429.53 -0.0703 -0.0662 -0.0373 0.0160
06 110.00 12.95 196.33 0.00 430.53 -0.0702 -0.0658 -0.0375 0.0160
07 110.00 13.01 206.66 0.00 431.52 -0.0703 -0.0653 -0.0376 0.0160
08 110.00 13.30 248.75 0.00 435.55 -0.0703 -0.0633 -0.0382 0.0162
09 110.00 14.01 353.20 0.00 445.58 -0.0703 -0.0585 -0.0397 0.0164
10 110.00 14.58 437.00 0.00 453.61 -0.0702 -0.0546 -0.0409 0.0166
11 110.00 14.73 458.03 0.00 455.63 -0.0702 -0.0536 -0.0412 0.0167
12 110.00 14.80 468.37 0.00 456.62 -0.0702 -0.0532 -0.0413 0.0167
13 110.00 14.73 458.03 0.00 455.63 -0.0702 -0.0536 -0.0412 0.0167
14 110.00 14.58 437.00 0.00 453.61 -0.0702 -0.0546 -0.0409 0.0166
15 110.00 14.51 426.67 0.00 452.62 -0.0702 -0.0551 -0.0407 0.0166
16 110.00 14.51 426.67 0.00 452.62 -0.0702 -0.0551 -0.0407 0.0166
17 110.00 14.80 468.37 0.00 456.62 -0.0702 -0.0532 -0.0413 0.0167
18 2.07 0.00 520.00 108.88 522.63 -0.0702 -0.0488 -0.0300 0.0222
19 107.35 6.12 520.00 0.00 474.13 -0.0702 -0.0507 -0.0418 0.0175
20 110.00 15.08 510.08 0.00 460.63 -0.0702 -0.0512 -0.0419 0.0168
21 110.00 15.01 499.76 0.00 459.63 -0.0702 -0.0517 -0.0418 0.0168
22 110.00 14.87 478.71 0.00 457.62 -0.0702 -0.0527 -0.0415 0.0167
23 110.00 14.51 426.67 0.00 452.62 -0.0702 -0.0551 -0.0407 0.0166
24 110.00 14.09 363.91 0.00 446.60 -0.0702 -0.0580 -0.0399 0.0164
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Table 5.10 DC OPF Solution Results in SI Units for Five-Node Case -
LMP Values (Equality Constraint Multipliers) and Minimized
Total Variable Cost

Hour LMP1 LMP2 LMP3 LMP4 LMP5 minTVC
01 15.17 35.50 31.65 21.05 16.21 19587.11
02 15.16 33.95 30.39 20.60 16.13 17107.25
03 15.16 32.92 29.55 20.30 16.07 15556.75
04 15.16 32.40 29.13 20.15 16.04 14800.93
05 15.15 31.89 28.72 20.00 16.01 14076.09
06 15.16 32.15 28.93 20.07 16.03 14436.48
07 15.16 32.40 29.13 20.15 16.04 14800.93
08 15.16 33.44 29.97 20.45 16.10 16330.20
09 15.17 36.01 32.06 21.20 16.24 20433.88
10 15.18 38.08 33.74 21.81 16.35 24043.63
11 15.18 38.60 34.16 21.96 16.38 24993.90
12 15.18 38.85 34.37 22.03 16.39 25467.47
13 15.18 38.60 34.16 21.96 16.38 24993.90
14 15.18 38.08 33.74 21.81 16.35 24043.63
15 15.17 37.82 33.53 21.73 16.34 23583.10
16 15.17 37.82 33.53 21.73 16.34 23583.10
17 15.18 38.85 34.37 22.03 16.39 25467.47
18 14.02 78.24 66.07 32.61 17.32 31038.51
19 15.07 45.55 39.78 23.90 16.64 28006.88
20 15.18 39.88 35.20 22.33 16.45 27422.37
21 15.18 39.63 35.00 22.26 16.43 26931.89
22 15.18 39.11 34.57 22.11 16.41 25945.85
23 15.17 37.82 33.53 21.73 16.34 23583.10
24 15.17 36.28 32.28 21.28 16.25 20879.49
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Table 5.11 DC OPF Solution Results in SI Units for Five-Node Case
- Thermal Limit Inequality Constraint Multipliers for Each
Branch in Each Direction (km and mk)

Branch km multipliers
Hour 12 14 15 23 34 45 21 41 51 32 43 54
01 30.36 0 0 0 0 0 0 0 0 0 0 0
02 28.05 0 0 0 0 0 0 0 0 0 0 0
03 26.52 0 0 0 0 0 0 0 0 0 0 0
04 25.74 0 0 0 0 0 0 0 0 0 0 0
05 24.99 0 0 0 0 0 0 0 0 0 0 0
06 25.37 0 0 0 0 0 0 0 0 0 0 0
07 25.74 0 0 0 0 0 0 0 0 0 0 0
08 27.29 0 0 0 0 0 0 0 0 0 0 0
09 31.12 0 0 0 0 0 0 0 0 0 0 0
10 34.20 0 0 0 0 0 0 0 0 0 0 0
11 34.97 0 0 0 0 0 0 0 0 0 0 0
12 35.35 0 0 0 0 0 0 0 0 0 0 0
13 34.97 0 0 0 0 0 0 0 0 0 0 0
14 34.20 0 0 0 0 0 0 0 0 0 0 0
15 33.82 0 0 0 0 0 0 0 0 0 0 0
16 33.82 0 0 0 0 0 0 0 0 0 0 0
17 35.35 0 0 0 0 0 0 0 0 0 0 0
18 95.88 0 0 0 0 0 0 0 0 0 0 0
19 45.50 0 0 0 0 0 0 0 0 0 0 0
20 36.88 0 0 0 0 0 0 0 0 0 0 0
21 36.50 0 0 0 0 0 0 0 0 0 0 0
22 35.73 0 0 0 0 0 0 0 0 0 0 0
23 33.82 0 0 0 0 0 0 0 0 0 0 0
24 31.51 0 0 0 0 0 0 0 0 0 0 0
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Table 5.12 DC OPF Solution Results in SI Units for Five-Node Case -
Lower and Upper Production Inequality Constraint Multipliers
for Each Generator

Hour PL
G1 PL

G2 PL
G3 PL

G4 PL
G5 PU

G1 PU
G2 PU

G3 PU
G4 PU

G5

01 0 0 0 8.95 0 0.07 0 0 0 0
02 0 0 0 9.40 0 0.06 0 0 0 0
03 0 0 0 9.70 0 0.06 0 0 0 0
04 0 0 0 9.85 0 0.06 0 0 0 0
05 0 0 0 10.00 0 0.05 0 0 0 0
06 0 0 0 9.93 0 0.06 0 0 0 0
07 0 0 0 9.85 0 0.06 0 0 0 0
08 0 0 0 9.55 0 0.06 0 0 0 0
09 0 0 0 8.80 0 0.07 0 0 0 0
10 0 0 0 8.19 0 0.08 0 0 0 0
11 0 0 0 8.04 0 0.08 0 0 0 0
12 0 0 0 7.97 0 0.08 0 0 0 0
13 0 0 0 8.04 0 0.08 0 0 0 0
14 0 0 0 8.19 0 0.08 0 0 0 0
15 0 0 0 8.27 0 0.07 0 0 0 0
16 0 0 0 8.27 0 0.07 0 0 0 0
17 0 0 0 7.97 0 0.08 0 0 0 0
18 0 0.98 0 0 0 0 0 30.67 0 0
19 0 0 0 6.10 0 0 0 4.38 0 0
20 0 0 0 7.67 0 0.08 0 0 0 0
21 0 0 0 7.74 0 0.08 0 0 0 0
22 0 0 0 7.89 0 0.08 0 0 0 0
23 0 0 0 8.27 0 0.07 0 0 0 0
24 0 0 0 8.72 0 0.07 0 0 0 0



www.manaraa.com

249

Table 5.13 DC OPF Solution Results in SI Units for Five-Node Case - Op-
timal Real Power Branch Flow Pkm and Its Associated Thermal
Limit PU

km for Each km ∈ BI

Hour P12
a P14 P15 P23 P34 P45

01 250.00 129.65 -255.77 -100.00 -67.47 -187.82
02 250.00 126.71 -253.27 -72.93 -80.32 -184.27
03 250.00 124.77 -251.61 -55.04 -88.81 -181.93
04 250.00 123.79 -250.77 -46.02 -93.09 -180.74
05 250.00 122.83 -249.95 -37.16 -97.30 -179.58
06 250.00 123.31 -250.36 -41.59 -95.19 -180.16
07 250.00 123.79 -250.77 -46.02 -93.09 -180.74
08 250.00 125.75 -252.45 -64.07 -84.52 -183.11
09 250.00 130.61 -256.60 -108.86 -63.26 -188.98
10 250.00 134.51 -259.92 -144.80 -46.20 -193.69
11 250.00 135.49 -260.76 -153.82 -41.92 -194.87
12 250.00 135.97 -261.17 -158.25 -39.81 -195.45
13 250.00 135.49 -260.76 -153.82 -41.92 -194.87
14 250.00 134.51 -259.92 -144.80 -46.20 -193.69
15 250.00 134.03 -259.51 -140.37 -48.30 -193.11
16 250.00 134.03 -259.51 -140.37 -48.30 -193.11
17 250.00 135.97 -261.17 -158.25 -39.81 -195.45
18 250.00 98.83 -346.76 -198.62 -63.15 -175.88
19 250.00 137.64 -274.17 -180.73 -29.93 -199.96
20 250.00 137.91 -262.83 -176.14 -31.32 -197.80
21 250.00 137.43 -262.42 -171.71 -33.42 -197.22
22 250.00 136.45 -261.58 -162.69 -37.71 -196.03
23 250.00 134.03 -259.51 -140.37 -48.30 -193.11
24 250.00 131.11 -257.02 -113.46 -61.08 -189.58

PU
12 PU

14 PU
15 PU

23 PU
34 PU

45

250.00 150.00 400.00 350.00 240.00 240.00

aIn accordance with the usual convention, the real power Pkm flowing along a branch km is positively valued
if and only if real power is flowing from node k to node m.
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Table 5.14 Sensitivity Test Results for Three-Node Case (π = 100, Angles
in Radians)

Hour p∗G1 p∗G2 p∗G3 δ∗2 δ∗3 LMP1 LMP2 LMP3 minTVC
01 200.0 16.1 5.0 -0.079920 -0.109520 18.2555 18.2971 18.3239 2993.95
02 189.0 10.0 5.0 -0.080800 -0.104800 12.4441 12.4858 12.5094 2724.33
03 177.7 10.0 5.0 -0.075216 -0.097887 12.3395 12.3783 12.4005 2565.12
04 172.0 10.0 5.0 -0.072400 -0.094400 12.2867 12.3240 12.3455 2485.70
05 166.4 10.0 5.0 -0.069633 -0.090974 12.2349 12.2708 12.2915 2408.27
06 169.2 10.0 5.0 -0.071016 -0.092687 12.2608 12.2974 12.3185 2446.91
07 172.0 10.0 5.0 -0.072400 -0.094400 12.2867 12.3240 12.3455 2485.70
08 183.4 10.0 5.0 -0.078033 -0.101374 12.3923 12.4325 12.4554 2645.13
09 200.0 21.7 5.0 -0.074122 -0.107675 18.3266 18.3656 18.3941 3097.90
10 200.0 44.4 5.0 -0.050621 -0.100198 18.6149 18.6435 18.6786 3527.13
11 200.0 50.1 5.0 -0.044720 -0.098320 18.6873 18.7132 18.7500 3636.90
12 200.0 52.9 5.0 -0.041821 -0.097398 18.7229 18.7475 18.7851 3691.11
13 200.0 50.1 5.0 -0.044720 -0.098320 18.6873 18.7132 18.7500 3636.90
14 200.0 44.4 5.0 -0.050621 -0.100198 18.6149 18.6435 18.6786 3527.13
15 200.0 41.6 5.0 -0.053520 -0.101120 18.5794 18.6092 18.6435 3473.51
16 200.0 41.6 5.0 -0.053520 -0.101120 18.5794 18.6092 18.6435 3473.51
17 200.0 52.9 5.0 -0.041821 -0.097398 18.7229 18.7475 18.7851 3691.11
18 200.0 78.4 5.0 -0.015421 -0.088998 19.0468 19.0596 19.1047 4193.64
19 200.0 67.1 5.0 -0.027120 -0.092720 18.9033 18.9213 18.9631 3968.98
20 200.0 64.2 5.0 -0.030122 -0.093675 18.8664 18.8858 18.9267 3911.83
21 200.0 61.4 5.0 -0.033021 -0.094598 18.8309 18.8515 18.8916 3856.85
22 200.0 55.7 5.0 -0.038922 -0.096475 18.7585 18.7818 18.8202 3745.51
23 200.0 41.6 5.0 -0.053520 -0.101120 18.5794 18.6092 18.6435 3473.51
24 200.0 24.6 5.0 -0.071120 -0.106720 18.3634 18.4011 18.4304 3152.03
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Table 5.15 Sensitivity Test Results for Three-Node Case (π = 10, Angles
in Radians)

Hour p∗G1 p∗G2 p∗G3 δ∗2 δ∗3 LMP1 LMP2 LMP3 minTVC
01 200.0 16.1 5.0 -0.079920 -0.109520 18.2929 18.2971 18.2997 2993.95
02 189.0 10.0 5.0 -0.080800 -0.104800 12.4441 12.4483 12.4507 2724.33
03 177.7 10.0 5.0 -0.075216 -0.097887 12.3395 12.3434 12.3456 2565.12
04 172.0 10.0 5.0 -0.072400 -0.094400 12.2867 12.2905 12.2926 2485.70
05 166.4 10.0 5.0 -0.069633 -0.090974 12.2349 12.2385 12.2405 2408.27
06 169.2 10.0 5.0 -0.071016 -0.092687 12.2608 12.2645 12.2666 2446.91
07 172.0 10.0 5.0 -0.072400 -0.094400 12.2867 12.2905 12.2926 2485.70
08 183.4 10.0 5.0 -0.078033 -0.101374 12.3923 12.3963 12.3986 2645.13
09 200.0 21.7 5.0 -0.074122 -0.107675 18.3617 18.3656 18.3685 3097.90
10 200.0 44.4 5.0 -0.050621 -0.100198 18.6406 18.6435 18.6470 3527.13
11 200.0 50.1 5.0 -0.044720 -0.098320 18.7106 18.7132 18.7169 3636.90
12 200.0 52.9 5.0 -0.041821 -0.097398 18.7450 18.7475 18.7513 3691.11
13 200.0 50.1 5.0 -0.044720 -0.098320 18.7106 18.7132 18.7169 3636.90
14 200.0 44.4 5.0 -0.050621 -0.100198 18.6406 18.6435 18.6470 3527.13
15 200.0 41.6 5.0 -0.053520 -0.101120 18.6062 18.6092 18.6126 3473.51
16 200.0 41.6 5.0 -0.053520 -0.101120 18.6062 18.6092 18.6126 3473.51
17 200.0 52.9 5.0 -0.041821 -0.097398 18.7450 18.7475 18.7513 3691.11
18 200.0 78.4 5.0 -0.015421 -0.088998 19.0583 19.0596 19.0641 4193.64
19 200.0 67.1 5.0 -0.027120 -0.092720 18.9195 18.9213 18.9255 3968.98
20 200.0 64.2 5.0 -0.030122 -0.093675 18.8839 18.8858 18.8899 3911.83
21 200.0 61.4 5.0 -0.033021 -0.094598 18.8495 18.8515 18.8555 3856.85
22 200.0 55.7 5.0 -0.038922 -0.096475 18.7794 18.7818 18.7856 3745.51
23 200.0 41.6 5.0 -0.053520 -0.101120 18.6062 18.6092 18.6126 3473.51
24 200.0 24.6 5.0 -0.071120 -0.106720 18.3973 18.4011 18.4040 3152.03
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Table 5.16 Sensitivity Test Results for Three-Node Case (π = 1, Angles in
Radians)

Hour p∗G1 p∗G2 p∗G3 δ∗2 δ∗3 LMP1 LMP2 LMP3 minTVC
01 200.0 16.1 5.0 -0.079920 -0.109520 18.2966 18.2971 18.2973 2993.95
02 189.0 10.0 5.0 -0.080800 -0.104800 12.4441 12.4446 12.4448 2724.33
03 177.7 10.0 5.0 -0.075216 -0.097887 12.3395 12.3399 12.3401 2565.12
04 172.0 10.0 5.0 -0.072400 -0.094400 12.2867 12.2871 12.2873 2485.70
05 166.4 10.0 5.0 -0.069633 -0.090974 12.2349 12.2352 12.2354 2408.27
06 169.2 10.0 5.0 -0.071016 -0.092687 12.2608 12.2612 12.2614 2446.91
07 172.0 10.0 5.0 -0.072400 -0.094400 12.2867 12.2871 12.2873 2485.70
08 183.4 10.0 5.0 -0.078033 -0.101374 12.3923 12.3927 12.3929 2645.13
09 200.0 21.7 5.0 -0.074122 -0.107675 18.3652 18.3656 18.3659 3097.90
10 200.0 44.4 5.0 -0.050621 -0.100198 18.6432 18.6435 18.6438 3527.13
11 200.0 50.1 5.0 -0.044720 -0.098320 18.7130 18.7132 18.7136 3636.90
12 200.0 52.9 5.0 -0.041821 -0.097398 18.7473 18.7475 18.7479 3691.11
13 200.0 50.1 5.0 -0.044720 -0.098320 18.7130 18.7132 18.7136 3636.90
14 200.0 44.4 5.0 -0.050621 -0.100198 18.6432 18.6435 18.6438 3527.13
15 200.0 41.6 5.0 -0.053520 -0.101120 18.6089 18.6092 18.6095 3473.51
16 200.0 41.6 5.0 -0.053520 -0.101120 18.6089 18.6092 18.6095 3473.51
17 200.0 52.9 5.0 -0.041821 -0.097398 18.7473 18.7475 18.7479 3691.11
18 200.0 78.4 5.0 -0.015421 -0.088998 19.0595 19.0596 19.0601 4193.64
19 200.0 67.1 5.0 -0.027120 -0.092720 18.9211 18.9213 18.9217 3968.98
20 200.0 64.2 5.0 -0.030122 -0.093675 18.8856 18.8858 18.8862 3911.83
21 200.0 61.4 5.0 -0.033021 -0.094598 18.8513 18.8515 18.8519 3856.85
22 200.0 55.7 5.0 -0.038922 -0.096475 18.7815 18.7818 18.7822 3745.51
23 200.0 41.6 5.0 -0.053520 -0.101120 18.6089 18.6092 18.6095 3473.51
24 200.0 24.6 5.0 -0.071120 -0.106720 18.4007 18.4011 18.4014 3152.03
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Table 5.17 Sensitivity Test Results for Three-Node Case (π = 0.1, Angles
in Radians)

Hour p∗G1 p∗G2 p∗G3 δ∗2 δ∗3 LMP1 LMP2 LMP3 minTVC
01 200.0 16.1 5.0 -0.079920 -0.109520 18.2970 18.2971 18.2971 2993.95
02 189.0 10.0 5.0 -0.080800 -0.104800 12.4441 12.4442 12.4442 2724.33
03 177.7 10.0 5.0 -0.075216 -0.097887 12.3395 12.3395 12.3396 2565.12
04 172.0 10.0 5.0 -0.072400 -0.094400 12.2867 12.2868 12.2868 2485.70
05 166.4 10.0 5.0 -0.069633 -0.090974 12.2349 12.2349 12.2349 2408.27
06 169.2 10.0 5.0 -0.071016 -0.092687 12.2608 12.2608 12.2608 2446.91
07 172.0 10.0 5.0 -0.072400 -0.094400 12.2867 12.2868 12.2868 2485.70
08 183.4 10.0 5.0 -0.078033 -0.101374 12.3923 12.3923 12.3923 2645.13
09 200.0 21.7 5.0 -0.074122 -0.107675 18.3656 18.3656 18.3656 3097.90
10 200.0 44.4 5.0 -0.050621 -0.100198 18.6434 18.6435 18.6435 3527.13
11 200.0 50.1 5.0 -0.044720 -0.098320 18.7132 18.7132 18.7133 3636.90
12 200.0 52.9 5.0 -0.041821 -0.097398 18.7475 18.7475 18.7475 3691.11
13 200.0 50.1 5.0 -0.044720 -0.098320 18.7132 18.7132 18.7133 3636.90
14 200.0 44.4 5.0 -0.050621 -0.100198 18.6434 18.6435 18.6435 3527.13
15 200.0 41.6 5.0 -0.053520 -0.101120 18.6092 18.6092 18.6092 3473.51
16 200.0 41.6 5.0 -0.053520 -0.101120 18.6092 18.6092 18.6092 3473.51
17 200.0 52.9 5.0 -0.041821 -0.097398 18.7475 18.7475 18.7475 3691.11
18 200.0 78.4 5.0 -0.015421 -0.088998 19.0596 19.0596 19.0597 4193.64
19 200.0 67.1 5.0 -0.027120 -0.092720 18.9213 18.9213 18.9213 3968.98
20 200.0 64.2 5.0 -0.030122 -0.093675 18.8858 18.8858 18.8858 3911.83
21 200.0 61.4 5.0 -0.033021 -0.094598 18.8515 18.8515 18.8516 3856.85
22 200.0 55.7 5.0 -0.038922 -0.096475 18.7817 18.7818 18.7818 3745.51
23 200.0 41.6 5.0 -0.053520 -0.101120 18.6092 18.6092 18.6092 3473.51
24 200.0 24.6 5.0 -0.071120 -0.106720 18.4011 18.4011 18.4011 3152.03
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Table 5.18 Sensitivity Test Results for Three-Node Case (π = 0.01, Angles
in Radians)

Hour p∗G1 p∗G2 p∗G3 δ∗2 δ∗3 LMP1 LMP2 LMP3 minTVC
01 200.0 16.1 5.0 -0.079920 -0.109520 18.2971 18.2971 18.2971 2993.95
02 189.0 10.0 5.0 -0.080800 -0.104800 12.4441 12.4441 12.4441 2724.33
03 177.7 10.0 5.0 -0.075216 -0.097887 12.3395 12.3395 12.3395 2565.12
04 172.0 10.0 5.0 -0.072400 -0.094400 12.2867 12.2867 12.2867 2485.70
05 166.4 10.0 5.0 -0.069633 -0.090974 12.2349 12.2349 12.2349 2408.27
06 169.2 10.0 5.0 -0.071016 -0.092687 12.2608 12.2608 12.2608 2446.91
07 172.0 10.0 5.0 -0.072400 -0.094400 12.2867 12.2867 12.2867 2485.70
08 183.4 10.0 5.0 -0.078033 -0.101374 12.3923 12.3923 12.3923 2645.13
09 200.0 21.7 5.0 -0.074122 -0.107675 18.3656 18.3656 18.3656 3097.90
10 200.0 44.4 5.0 -0.050621 -0.100198 18.6435 18.6435 18.6435 3527.13
11 200.0 50.1 5.0 -0.044720 -0.098320 18.7132 18.7132 18.7132 3636.90
12 200.0 52.9 5.0 -0.041821 -0.097398 18.7475 18.7475 18.7475 3691.11
13 200.0 50.1 5.0 -0.044720 -0.098320 18.7132 18.7132 18.7132 3636.90
14 200.0 44.4 5.0 -0.050621 -0.100198 18.6435 18.6435 18.6435 3527.13
15 200.0 41.6 5.0 -0.053520 -0.101120 18.6092 18.6092 18.6092 3473.51
16 200.0 41.6 5.0 -0.053520 -0.101120 18.6092 18.6092 18.6092 3473.51
17 200.0 52.9 5.0 -0.041821 -0.097398 18.7475 18.7475 18.7475 3691.11
18 200.0 78.4 5.0 -0.015421 -0.088998 19.0596 19.0596 19.0596 4193.64
19 200.0 67.1 5.0 -0.027120 -0.092720 18.9213 18.9213 18.9213 3968.98
20 200.0 64.2 5.0 -0.030122 -0.093675 18.8858 18.8858 18.8858 3911.83
21 200.0 61.4 5.0 -0.033021 -0.094598 18.8515 18.8515 18.8515 3856.85
22 200.0 55.7 5.0 -0.038922 -0.096475 18.7818 18.7818 18.7818 3745.51
23 200.0 41.6 5.0 -0.053520 -0.101120 18.6092 18.6092 18.6092 3473.51
24 200.0 24.6 5.0 -0.071120 -0.106720 18.4011 18.4011 18.4011 3152.03
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Table 5.19 Sensitivity Test Results for Three-Node Case - Cross Com-
parison for Sum of Squared Voltage Angle Differences for
π = 100, 10, 1, 0.1, 0.01, Angles in Radians

Hour SSVAD100
a SSVAD10 SSVAD1 SSVAD0.1 SSVAD0.01 MaxADb

01 0.019257997 0.019257997 0.019257997 0.019257997 0.019257997 8.10E-15
02 0.018087680 0.018087680 0.018087680 0.018087680 0.018087680 4.16E-14
03 0.015753349 0.015753349 0.015753349 0.015753349 0.015753349 3.95E-14
04 0.014637120 0.014637120 0.014637120 0.014637120 0.014637120 3.83E-14
05 0.013580482 0.013580482 0.013580482 0.013580482 0.013580482 3.71E-14
06 0.014103844 0.014103844 0.014103844 0.014103844 0.014103844 3.77E-14
07 0.014637120 0.014637120 0.014637120 0.014637120 0.014637120 3.83E-14
08 0.016910662 0.016910662 0.016910662 0.016910662 0.016910662 4.05E-14
09 0.018213892 0.018213892 0.018213892 0.018213892 0.018213892 7.30E-15
10 0.015059898 0.015059898 0.015059898 0.015059898 0.015059898 4.50E-15
11 0.014539661 0.014539661 0.014539661 0.014539661 0.014539661 3.80E-15
12 0.014324057 0.014324057 0.014324057 0.014324057 0.014324057 3.80E-15
13 0.014539661 0.014539661 0.014539661 0.014539661 0.014539661 3.80E-15
14 0.015059898 0.015059898 0.015059898 0.015059898 0.015059898 4.50E-15
15 0.015355405 0.015355405 0.015355405 0.015355405 0.015355405 4.70E-15
16 0.015355405 0.015355405 0.015355405 0.015355405 0.015355405 4.70E-15
17 0.014324057 0.014324057 0.014324057 0.014324057 0.014324057 3.80E-15
18 0.013571891 0.013571891 0.013571891 0.013571891 0.013571891 1.19E-14
19 0.013635853 0.013635853 0.013635853 0.013635853 0.013635853 1.50E-14
20 0.013721393 0.013721393 0.013721393 0.013721393 0.013721393 1.63E-14
21 0.013830775 0.013830775 0.013830775 0.013830775 0.013830775 1.76E-14
22 0.014134773 0.014134773 0.014134773 0.014134773 0.014134773 1.99E-14
23 0.015355405 0.015355405 0.015355405 0.015355405 0.015355405 4.70E-15
24 0.017714573 0.017714573 0.017714573 0.017714573 0.017714573 7.00E-15

aSum of squared voltage angle differences for a specific choice of π, where π is specified to be 100, 10, 1,
0.1 or 0.01. More precisely, SSVAD =

∑
km∈BI[δ

∗
k − δ∗m]2

bMaximum absolute difference between any two SSVAD values
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Table 5.20 Sensitivity Test Results for Five-Node Case - Cross Com-
parison for Sum of Squared Voltage Angle Differences for
π = 100, 10, 1, 0.1, 0.01, Angles in Radians

Hour SSVAD100 SSVAD10 SSVAD1 SSVAD0.1 SSVAD0.01 MaxAD
01 0.010386061 0.010386162 0.010386172 0.010386173 0.010386173 1.12E-07
02 0.010307655 0.010307759 0.010307769 0.010307770 0.010307771 1.16E-07
03 0.010283485 0.010283591 0.010283602 0.010283603 0.010283603 1.18E-07
04 0.010279443 0.010279550 0.010279561 0.010279562 0.010279562 1.19E-07
05 0.010280962 0.010281070 0.010281081 0.010281082 0.010281082 1.20E-07
06 0.010279593 0.010279701 0.010279712 0.010279713 0.010279713 1.20E-07
07 0.010279443 0.010279550 0.010279561 0.010279562 0.010279562 1.19E-07
08 0.010292874 0.010292979 0.010292989 0.010292990 0.010292991 1.17E-07
09 0.010422608 0.010422708 0.010422718 0.010422719 0.010422719 1.11E-07
10 0.010625778 0.010625874 0.010625884 0.010625885 0.010625885 1.07E-07
11 0.010690587 0.010690682 0.010690691 0.010690692 0.010690692 1.05E-07
12 0.010724577 0.010724671 0.010724680 0.010724681 0.010724681 1.05E-07
13 0.010690587 0.010690682 0.010690691 0.010690692 0.010690692 1.05E-07
14 0.010625778 0.010625874 0.010625884 0.010625885 0.010625885 1.07E-07
15 0.010595866 0.010595962 0.010595972 0.010595973 0.010595973 1.07E-07
16 0.010595866 0.010595962 0.010595972 0.010595973 0.010595973 1.07E-07
17 0.010724577 0.010724671 0.010724680 0.010724681 0.010724681 1.05E-07
18 0.009870395 0.009870652 0.009870678 0.009870680 0.009870681 2.86E-07
19 0.010980723 0.010980723 0.010980723 0.010980723 0.010980722 6.60E-10
20 0.010875114 0.010875206 0.010875215 0.010875216 0.010875216 1.03E-07
21 0.010835704 0.010835797 0.010835806 0.010835807 0.010835807 1.03E-07
22 0.010759863 0.010759957 0.010759967 0.010759968 0.010759968 1.04E-07
23 0.010595866 0.010595962 0.010595972 0.010595973 0.010595973 1.07E-07
24 0.010443596 0.010443696 0.010443705 0.010443707 0.010443707 1.10E-07
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CHAPTER 6. GENERAL CONCLUSIONS

The restructuring process in the U.S. wholesale electric power industry has been undergoing

for more than a decade. There have been increasingly intensive debates among academic

researchers, industrial stakeholders and government policy makers regarding the direction of

current restructuring efforts. There are also tremendous amount of

In this dissertation research, I apply analytical, statistical and agent-based computational

simulation tools to investigate and test financial and real market operations in the restructured

U.S. wholesale power industry. The main findings are summarized in the following paragraphs.

In my first paper, I develop a theoretical model to assess the welfare enhance property

of financial transmission rights (FTRs). Specifically, I am able to show that under network

uncertainty the acquisition of optimal FTRs by the risk averse market traders will increase the

social welfare compared with the case where there are no FTRs available. This result presents

a counterexample to the somewhat negative views about FTRs held by some economists in the

literature and provides some economic explanations to the fact that FTRs are widely adopted

as a financial hedge instrument in the major U.S. wholesale power markets.

Different from the theoretical nature of the first study, my second paper investigates a spe-

cific FTR market, namely the the FTR auction market in the Midwest energy region (MISO),

using a set of econometric estimation tools such as linear regression, nonparametric kernel

regression and goodness-of-fit tests. As a first attempt to study this newly established mar-

ket, we are interested in analyzing the performance of the MISO FTR auction market. The

main results show that during the current sample periods the MISO FTR market is system-

atically losing money (revenue insufficiency), which on the other hand suggests that market

participants on average exhibit some degree of risk loving behavior. More data are needed in
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order to obtain meaningful economic analysis such as estimating the impact of an agent’s risk

preference on his willingness to pay for the premium of FTR in this complex market.

Distinct from the first two studies, my third paper goes a further micro level to examine

the market design issues in the general wholesale power market context. Specifically, we want

to test the FERC’s WPMP design that has been implemented or adopted in major wholesale

power markets in the U.S. This study reports on the agent-based modeling development and

open-source implementation (in Java) of a computational wholesale power market organized in

accordance with core WPMP features and operating over a realistically rendered transmission

grid. Findings from a dynamic 5-node test case are presented for concrete illustration. With

traders being able to submit their offers strategically, it it found that traders (Generators) are

able to acquire substantial market power without any explicitly collusions. This suggests that

the core WPMP design features, as captured in our current computational framework, do not

prevent the considerable exercise of market power by traders.

My last paper focuses on an critical optimization component of my third paper that the

optimal hourly locational marginal prices (LMPs) and commitment/dispatch quantities have

to be cleared by a means of DC Optimal Power Flow (OPF) procedure in the wholesale power

market. The main contribution of this paper is to present an open-source strictly convex

quadratic programming (SCQP) solver QuadProgJ and shows how to use QuadProgJ to solve

DC OPF problems.
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